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Abstract

This work introduces a new approach in time-series analysis field for automatic co-
variates selection in dynamic regression models. Based on [1] and [2] previous study, a
forward-selection method is proposed for adding new significant covariates from a given
set. This algorithm has been implemented and optimized in R as a package, and it has been
applied to multiple simulations to validate its performance. Finally, the obtained results
from the IRAS database of Catalonia are presented to analyze the COVID-19 evolution.

1 Introduction

In time-series analysis, the well-known dynamic regression models allow formally modelling
the dependence between a set of covariates and a dependent variable considering the intrinsic
temporal component of all participant variables. Thus, this type of regression models are of
widespread application in diverse scenarios where it is desired to analyze the effect of recollected
data in a time series of interest.

Formally, dynamic linear regression models define the linear dependence between a stochastic

process Yt (the dependent variable) and a set of processes X = {X(1)
t , X

(2)
t , ..., X

(m)
t } (candi-

dates for regressor variables) in times non-greater than t:

Yt = β0 + β1X
(1)
t−r1 + β2X

(2)
t−r2 + · · ·+ βmX

(m)
t−rm + ηt (1)

where ri ≥ 0, for i = 1, ...,m, and ηt ∼ ARMA(p,q).

In this work we formally introduce a new algorithm to select covariates which significantly
influence the behavior of a dependent variable. Due to the impact of COVID-19 around the
world, we use this method to formalize and study the relation of the COVID-19 evolution in
Catalonia (Spain) with the flu syndrome, COVID-19 vaccination and other recollected variables
from the IRAS database.

A. Leitao and L. Ramos (eds.), XoveTIC2022 (Kalpa Publications in Computing, vol. 14), pp. 136–138



XoveTIC Proceedings 2022 Ana X. Ezquerro, Germán Aneiros, Manuel Oviedo

2 Methodology

Following the definition in 1, [1] proposed a method named prewhitening for removing spurious
correlation (false linear correlation) between two processes Xt and Yt (where one of them is
not white noise and/or the other is not stationary) by analyzing the cross correlation function

ρk(Ẍt, Ÿt) =
Cov(Ẍt, Ÿt−k)

σẌt
σŸt

where σZt
denotes the standard deviation of a stochastic process

Zt and Ẍt and Ÿt are obtained via some linear filter application to Xt and Yt ensuring one of
them is white noise and the other is a stationary process. Specifically, [1] proposes a real linear
correlation between Xt and Yt if exists some k where ρk(Ẍt, Ÿt) is statistically significant. This
method is applied to obtain the optimal lags of each regressor in 1, considering the condition
of k being less or equal than 0.

Our approach iteratively adds dependent processes to a model by checking if a significant
correlation (as in [1]) exists between a new process (candidate for regressor variable) and the
residuals ηt of a simpler model.

Let Yt be the stochastic dependent process and X be the set of processes that might act
as regressor variables in the model (candidates), and an information criterion (IC) for model
evaluation. Our method proceeds as follows:

1. Initialization. Consider the process Ỹt = Yt that will be used to check the existence of
linear correlation between Yt and each Xt ∈ X with [1] method, ν = ∞ the value of
the IC corresponding to the best model with 1 form, X (s,r) the set of selected covariates
paired with their respective optimal lags and X (s) the set of selected covariates (with no
lag information). Let M(Z) be the fitted dynamic regression model regarding Yt where
Z is the set of covariates paired with their optimal lags:

M(Z) := Yt = β0 +
∑

(Zt,r)∈Z

β(Zt,r)Zt−r + ηt

where β(Zt,r) is obtained via some estimation.

2. Iterative selection. For each Xt ∈ X − X (s), obtain the optimal lag where the maximum
linear cross correlation between Xt and Ỹt occurs (via [1] method). Consider the process
Xbest

t ∈ X − X (s) that minimizes and improves ν value, based on the selected IC, by
including it in the model with its optimal lag (rXbest

t
):

Xbest
t = argmin

Xt∈X−X (s)

{
criteria

(
M
(
X (s,r) ∪

{
(Xt, rXt)

}) )}
(2)

conditioned to criteria(·) < ν1. If Xbest
t exists, consider X (s,r) = X (s,r)∪{(Xbest

t , rXbest
t

)},
Ỹt = ηt and ν = criteria(X (s,r))2. Repeat this step until no process Xt ∈ X − X (s) can
be added to the model, i.e. Xbest

t does not exist.

3. Finalization. If the errors ηt of M(X (s,r)) are not stationary and no model with ηt ∼
ARMA(p,q) and X (s,r) covariates can be adjusted, consider the regular differentiation of
all data (dependent variable and regressor candidates) and return to (1). Otherwise, it is
proven that M(X (s,r)) with stationary errors defines the significant correlation between
the set of X (s) regressor variables and the dependent process Yt.

1for simplicity, we denote the expression in criteria() in 2 as ·
2once Xbest

t has been added to the model
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Table 1: Information about the dynamic regression model constructed via selection of multiple
vaccination variables to model COVID19 evolution

Covariate Lag Coefficient est. (s.e)

vac4565 -3 -0.0410 (0.0057)
vac6580 -2 -0.0468 (0.0120)
vac1845 -6 -0.0901 (0.0047)

vac1218 Not included in the model
vac80 Not included in the model

residuals ARIMA(4, 0, 0)
ϕ1 = 2.0816(0.0810)
ϕ2 = −1.2837(0.1152)
ϕ4 = 0.1919(0.0432)

This algorithm was implemented in R programming language. The step 2 was optimized
by parallelizing the fit of independent models of each candidate in X . Dickey-Fuller test is
used for checking processes stationary, Ljung-Box to check the independence, Shapiro-Wilks
and Jarque-Bera tests for normality and t-test for zero mean of ARIMA residuals.

3 Simulation results

In order to validate the performance of our selection method, we simulate multiple scenarios
where a time series Yt was artificially constructed with other variables (introduced with their
respective coefficients and lags as in 1), which were added to a set of candidates along with
more variables which do not influence in the construction of Yt. The algorithm was tested when
the residuals of the model ηt were stationary and non-stationary.

4 COVID-19 application

Our approach was tested in the IRAS (acute respiratory infections) database of Catalonia
(Spain) in order to analyze the evolution of COVID-19 and the impact of other variables, such
as the vaccination progress and influenza confirmed cases. In addition, individual data was
aggregated by age ranges and Health Areas to study the correlation between groups and their
influence in the global evolution.

Table 13 resumes the algorithm trace and the order of covariates addition to the model.
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3where vac1218, vac1845, vac4565, vac6580 denote the vaccination in population from 12, 18, 45 and 65 up
to 18, 45, 65 and 80 years (exclusive), respectively, and vac80 denotes the vaccination in population from 80
years.
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