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Abstract 

The study of the relationship between extreme rainfall events and surface 

temperature represents an important issue in hydrology and meteorology and it could be 

of capital importance for evaluating the effect of global warming on future 

precipitation. Various approaches have been tested across different parts of the world, 

and, in many cases, it has been observed an intensification of precipitation with 

increasing temperature consistently with the thermodynamic Clausius-Clapeyron 

relation (CC-rate of 6-7% °C
-1

), according to which a warmer atmosphere is capable of 

holding more moisture. Nevertheless, in different locations, the scaling rate between 

temperature and extreme precipitation has resulted significantly different with respect to 

the CC-rate, in some cases sensibly higher (super-CC) and in other relevantly lower 

(sub-CC). In this work, an analysis of the scaling relationship between sub-daily 

extreme rainfall events and surface temperature is carried out, using data from a large 

number of rain and temperature gauges across Sicily (Italy). Results highlight the 

relevant importance of some modeling choices and, particularly, of rainfall duration, for 

this type of analysis in semi-arid region. An overall sub-CC scaling rate has been 

detected for most part of the region.    

 

1 Introduction 

One of the most significant implications of a warming climate in many parts of the world is an 

intensification of extreme precipitation. More frequent short-duration extreme rainfall events can lead 
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to numerous hazards, from flooding to landslides, with growing risks for human life and damage to 

buildings and infrastructures. 

Atmospheric temperature strongly influences rainfall intensity, since warmer air has the potential 

to provide more moisture to the rainfall process. The intensity of rainfall events is, in fact, strictly 

correlated to the amount of vapor held in atmosphere and the physical conditions of the air. The 

theoretical basis of the relationship that links air temperature and atmospheric humidity is provided by 

the Clausius-Clapeyron relation (CC), according to which, if relative humidity remains constant, then 

atmospheric moisture will increase at a rate that follows the saturation vapor pressure dependency on 

temperature (i.e., 6-7% °C
-1

). Under the assumption that during extreme events, all water vapor in the 

air (or a relevant and constant fraction of it) is converted into rain, then precipitation for extreme 

events should scale with the CC rate.  

Interestingly, various observational studies in different parts of the world have exhibited scaling 

rate not constant with land surface temperature, different from the theoretical CC rate and with values 

both higher (super-CC) and lower (sub-CC). 

One of earlier works analyzing the scaling relationship between precipitation and temperature, 

using data from the Netherlands, tried to explain how the extreme percentiles of hourly rainfall vary 

depending on surface temperature (Lenderink & Van Meijgaard, 2008). The main outcome was that 

the 99
th

 and higher percentiles increased with temperature at approximately the CC rate for 

temperatures up to 12°C and at double rate for temperatures up to 22°C. A similar methodology was 

subsequently used to analyze the scaling rate in various regions across the world, from Europe (Berg, 

Moseley, & Haerter, 2013; Berg & Haerter, 2013; Blenkinsop, Chan, Kendon, Roberts, & Folwer, 

2015; Loriaux, Lenderink, De Roode, & Siebesma, 2013) to Australia (Hardwick Jones, Westra, & 

Sharma, 2010), from Nord America (Shaw, Royem, & Riha, 2011; Mishra, Wallace, & Lettenmaier, 

2012) to Asia (Yu & Li, 2012; Utsumi, Seto, Kanae, Maeda, & Oki, 2011). Nevertheless, there are 

very few evidences of this type of analysis for arid or semi-arid areas, where scaling frequently 

appears to be lower than the CC rate (Pall, Allen, & Stone, 2007; Wentz, Ricciardulli, Hilburn, & 

Mears, 2007; O'Gorman & Muller, 2010). 

Recent studies (Blenkinsop, Chan, Kendon, Roberts, & Folwer, 2015; Hardwick Jones, Westra, & 

Sharma, 2010) have shown that the relationship between mean daily temperature and the 99
th

 

percentile of maximum hourly precipitation cannot always be fully interpreted by a linear regression 

model. Sometimes LOESS (LOcally-wEighted Scatter-plot Smoothing) approach (Cleveland, 1979) 

estimated relationship has been also used to describe the scaling behavior (Blenkinsop, Chan, 

Kendon, Roberts, & Folwer, 2015). Some studies investigated the role of various modeling choices; 

for instance, the scaling rate may vary widely with the selected percentile and with data time 

resolution. In particular, scaling rate has been found to be approximately constant for sub-hourly 

durations and then reduces with longer durations, and, furthermore, it increases with increasing 

percentile (Hardwick Jones, Westra, & Sharma, 2010).  

Also seasonality has an important role in the scaling relationship for daily precipitation; a seasonal 

variability in the temperature dependence of precipitation intensity has been observed, for instance, in 

(Sherwood, Roca, Weckwerth, & Andronova, 2010), where a general increase in winter and a 

decrease in summer have been found (Westra, et al., 2014; Panthou, Mailhot, Laurence, & Talbot, 

2014).  

In this study, we refer to the most consolidated and used modelling framework (Berg, Moseley, & 

Haerter, 2013; Berg & Haerter, 2013; Loriaux, Lenderink, De Roode, & Siebesma, 2013; Blenkinsop, 

Chan, Kendon, Roberts, & Folwer, 2015; Hardwick Jones, Westra, & Sharma, 2010; Molnar, Fatichi, 

Gaal, Szolgay, & Burlando, 2015), using a similar approach to investigate the scaling relationship 

between sub-daily extreme rainfall events and surface temperature in Sicily, a semi-arid region of 

southern Italy. The role of different factors, such as the duration of rainfall maximum depth, the type 

of regression models and the climate seasonality are also analyzed. 
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2 Data and Methods 

The area study is the Sicily region (southern Italy), where a discrete spatial variability in the 

elevation (Figure 1a) concurs into generating a rather significative spatial variability also in some 

climate variables such as precipitation (Figure 1b) and temperature (Figure 1c).  

The dataset is constituted by data collected by the regional agency SIAS (Servizio Informativo 

Agrometeorologico Siciliano; i.e. Agro-meteorological Information Service of Sicily) from 2003 to 

2015 at 107 temperature and rain gauge stations spread over the entire region (Errore. L'origine 

riferimento non è stata trovata.d). The original data time-resolution was hourly for temperature (for 

a total sample size of 12,192,864 data) and 10 minutes for rainfall (for a total sample size of 

73,157,184 data). A data pre-processing procedure has been preliminarily applied to each gauge 

station records in order to identify missing or suspicious data (individual year with more than 15% 

missing data have been rejected). Stations with less than 10 years of simultaneous temperature-

precipitation data have been excluded; at the end of this procedure, the resulting dataset included data 

from 93 gauges.  

The adopted methodology can be summarized through the following steps: 

 identification, for each gauge station, of all the rainy days (i.e. days with not null 

rainfall), and, for each of them, computation of the mean daily temperature and the 

maximum rainfall for the duration of 10, 30 and 60 minutes (hereafter referred to as P10, 

P30 and P60); 

 constitution, for each gauge station and rainfall duration, of three seasonal subsamples 

with couples of corresponding (i.e. both referred to the same day) values of mean 

temperature and rainfall maximum: 1) Unique Season sample (data from the entire 

hydrological year); 2) Dry Season sample (data from April to September); 3) Wet Season 

sample (data of the remaining part of the year); 

 distinction between single gauge analysis and pooled gauges analysis: for this last case, 

all the different seasonal subsamples from the various stations have been pooled together 

and studied as an unique regional seasonal sample; 

 at the level of both single gauge and pooled gauges analysis, each sample has been first 

subdivided in a number (i.e., 10) of temperature bins, using an equal number (i.e. variable 

bin widths) classification (Blenkinsop, Chan, Kendon, Roberts, & Folwer, 2015). A 

couple of values have been then associated to each bin (i.e., 10 couples for each sample): 

the 99
th

 percentile of rainfall maxima (q99) and the median temperature (T) for each bin; 

 regression analysis to determine the fitting curve of the q99-T data derived at the 

previous step for each sample and estimate the corresponding rates; different regression 

models have been considered such as the exponential regression, the Two-Segment 

Piecewise Regression and the LOESS regression (Cleveland, 1979). 

A further analysis has been carried out to investigate the role of the considered percentile and 

number of bins, comparing scaling rates arising from: (i) a fixed number of bins (i.e. 10) and multiple 

quantiles (q50, q75, q90 and q99); and (ii) a fixed quantile (i.e. q99) and a different number of bins 

(from 8 to 12). It is important to point out that only regression models (least-squared linear regression 

using the log of precipitation) with coefficient of determination (R
2
) higher than a fixed threshold 

(assumed equal to 0.55) are considered as sufficiently adequate to represent the searched 

relationships; thus, scaling rates of models having lower R
2
 are neglected from successive analyses 

and statistics computation. 
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Figure 1: DEM (a); Mean Annual Precipitation (b) and Mean Annual Temperature (c) Regional map of 

SIAS weather stations (d). 

3 Results 

3.1 Single Gauges Analysis 

A first analysis has investigated the capability of regression models to interpret the relationship 

between rainfall percentiles (q99) and median temperature (T) for each bin (considered number of 

bins = 10). From the single gauge analysis, one can observe a different percentage of stations where 

the adoption of exponential regression models is suitable, depending on the considered season 

(Unique, Dry or Wet Season) and rainfall duration (10, 30 60 minutes).  

As it can be noticed from Figure 2 the percentage of considered stations (i.e., stations with 

associated a model with R
2
>0.55) is higher for the Unique and Wet Season, probably due to a higher 

samples size related to the higher frequency of rainy days in Sicily during the autumn and winter 

months. Rainy days are usually significantly reduced in spring and are almost absent during the 

summer and this implies, for many gauges in Sicily, a not sufficient consistence of the dataset during 

the Dry Season that, in turn, could affect the R
2 

of regression models. This would explain the 

reduction of the percentage of considered stations (about -60%) with respect to the Unique Season, 

and it could be a very important aspect to be considered for analyses in arid regions. Figure 2 shows 

that the percentage of considered stations increases with decreasing rainfall durations. This might be 

related to an overall stronger relationships between extreme precipitation and surface temperature 

when shorter events are considered; for several stations the regression models applied to P60 have had 
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slightly unsatisfying R
2
 (≤ 0.55), while passing from P60 to the P10 for the same stations (i.e. same 

original dataset), the corresponding regression model has provided acceptable R
2
 (>0.55). 

Figure 3a shows an example of exponential regression (linear regression in a semi-log plot) for the 

Unique Season sample of P30 recorded at the station ID 750 (Palermo Uditore). In this case, a typical 

sub-CC rate behaviour (rate= 3,7 % °C
-1

) occurs. 

In Figure 3b, the average scaling rate over all the stations for different considered percentiles (q50, 

q75, q90 and q99) are plotted. The figure refers to the Wet Season and P10 and shows how the scaling-

rate considerably increases with increasing percentile. The same behavior has been also found for the 

other seasons and for all the rainfall durations (not shown in figure) and is consistent with what found 

by (Hardwick Jones, Westra, & Sharma, 2010). 

Figure 3c shows the dependence of the scaling behavior on the number of bins; it displays the 

average scaling rate over all the stations derived considering a different number of bins (from 8 to 12) 

for the case of Unique Season and P10. The analysis showed that, for the Unique Season (as well as for 

the Wet Season) the scaling rate slightly decreases when the considered number of bins increases; an 

opposite behavior has been found for the Dry Season (not shown in figure), probably due to the lower 

samples size that could affect the analysis when temperature domain is subdivided into more bins.  

The analyses discussed hereafter have been performed considering q99 and a total number of bins 

equal to 10, according to the modeling framework adopted in (Blenkinsop, Chan, Kendon, Roberts, & 

Folwer, 2015). 

 
Figure 3: (a) Scaling relationships for the station ID 750: sample for the Unique Season and P30, black 

dashed lines refer to the CC-rate, while blue line refers to the least squared fitted linear regression model on the 

log of precipitation. Average scaling rate over all the stations as a function of (b) the percentiles (q50, q75, q90, 

q99, Wet Season, P10, 10 bins) and (c) the number of bins (q99, N° bins from 8 to 12, Unique Season, P10). 

Figure 2: Percentage of considered stations (R2>0.55) for the different subsamples (Unique Season, Wet 

Season, Dry Season) and rainfall durations (10, 30, 60 minutes). The total number of stations analyzed is 93. 
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In Figure 4, the empirical cumulative distribution functions (ecdfs) of the scaling rates found 

through the exponential regression (with R
2
>0.55) across all the gauges of the region are represented. 

Different colors refer to the different seasons, upper plot refers to P60, while middle and bottom plots 

refer to P30 and P10, respectively. From the Figure 4, a high variability of the scaling across the Sicily 

can be noticed for all the considered seasons and durations, with rates positive and ranging from 2 

%°C
-1

 to 8%°C
-1

. 

For all the analyzed durations, the scaling rate for the Wet and Dry Season resulted, on average, 

higher than for the Unique Season; this fact is strongly related to the much higher temperature 

variability characterizing the Unique Season that implies a smoothing of the scaling rate, and 

highlights the importance of perform seasonal analyses for regions characterized by high seasonal 

variability in temperature. An important aspect is also the different types of rainfall events 

characterizing the different seasons; in particular, during the warmer season in Sicily (especially 

during the summer) there is a prevalence of convective rainfall, which is more sensitive to 

temperature variations with respect to the large-scale stratiform precipitation that usually 

characterizes the colder months. This could partially explain the increase of rates found for higher 

temperatures, especially during the Dry Season. 

The scaling rate has resulted also particularly sensitive to the rainfall event duration; in particular, 

in accordance with (Hardwick Jones, Westra, & Sharma, 2010), it has been found to significantly 

increase with shorter precipitation durations (i.e. from P60 to P10) for the Unique and Wet Season, 

while the scaling for Dry Season has resulted almost insensitive to rainfall durations with only slightly 

lower scaling rates for 10 minutes events 

3.2 Two-Segment Piecewise Regression analysis 

The Two-Segment Piecewise Regression analysis has been performed at the level of single gauge 

by using an automatic code implemented in Matlab (MathWorks) and capable to: (i) detect the break-

point in the cloud of data points, dividing the temperature range into two parts; (ii) fit a least-squares 

linear regression model to each; (iii) derive the two scaling rates, specific for each segment. In Figure 

5, two explicative cases, referred to the Wet Season and P10, are represented, comparing the scaling 

rates obtained for the segments on the left (1) and on the right (2) of the break-point (see dashed red 

Figure 4: Ecdfs of the scaling rates of all the Sicilian gauges for the three considered rainfall 

durations: (a) P60; (b) P30; (c) P10. Different colors refer to the three seasons: Unique, Wet and Dry 

Season. 
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lines), with that resulting from the Exponential Regression , see the solid blue lines In particular, 

Figure 5a shows the results for the station ID 764, where the analysis has indicated a super-CC (i.e., 

10.7%°C
-1

) up to 12.4°C and a sub-CC above this temperature. A different behavior is observed for 

the case of Figure 5b, which shows one of the cases (ID 763) where a gauge sample cannot be 

adequately fitted by an Exponential Regression model (R
2
=0.25), whereas it can be successfully fitted 

using the Two-Segment Piecewise Regression (R
2
=0.86 for the left segment and R

2
=0.99 for the right 

segment). This case is also a typical example of peak-like structure in the relationships extreme 

rainfall-temperature, prevalently occurring for the Dry Season, in which, above the temperature 

break-point (at 14.5 °C for the case in figure) the scaling becomes negative. 

3.3 Pooled Gauges Analysis 

For the pooled gauges analysis, Sicily is considered as a single homogeneous zone and all the data 

recorded at all the stations are pooled into a unique sample, according to an approach also followed in 

(Hardwick Jones, Westra, & Sharma, 2010; Utsumi, Seto, Kanae, Maeda, & Oki, 2011); this 

obviously offers the possibility to consider a much wider sample size. Results of this analysis are 

visualized using a semi-log scatter density plots, fitting the nonparametric LOESS relationships, 

which allow to release the linearity assumptions. 

 
Figure 6: Density plots for pooled gauges. Solid blue lines indicate the LOESS-estimated relationship 

between 99th percentile and T, for P60 and the: (a) Unique Season; (b) Wet Season; (c) Dry Season. 

Figure 5: Red dashed lines indicate the Two-Segment Piecewise Regression for the stations ID 764 (a) and 

ID 763 (b), with scaling rates for each segment (1 and  2) for the case of Wet Season and P10. The solid blue 

lines denote the fitted Exponential Regression for each case. 
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The pooled gauges analysis has confirmed the results found through the single gauge analysis. The 

results for hourly duration are synthesized in Figure 6, where the density plots for the Unique (Figure 

6a), the Wet (Figure 6b) and the Dry Season (Figure 6c) and the estimated LOESS curves are shown. 

The figure exhibits an evident functional relationship between extreme rainfall events and surface 

temperature, almost linear (in semi-log plot) for the Wet Season, and much more elaborate for the Dry 

Season. 

From Figure 6 it emerges that the relationship between extreme hourly precipitation and 

temperature varies with temperature. For all the seasons the scaling appears not to be adequately 

described by a linear relationship, with an evident break-point at about 10°C for the Wet Season and 

even two break-points the Unique and for the Dry Season; a negative scaling rate has been in fact 

found for temperature values above 22°C. 

4 Conclusion 

This paper has examined the scaling relationship between mean daily temperature and extreme 

hourly and sub-hourly precipitation in Sicily, using a large and updated high-resolution dataset. 

The single gauge analysis has demonstrated how rainfall duration and, to a greater extent, 

seasonality play a crucial role in determining the scaling rate. For the Unique and Wet Season, higher 

rates have been observed when shorter rainfall durations are considered, while this effect is smoothed 

during the Dry Season, probably due to a lower occurrence of rainfall events, which are prevalently of 

convective type. Significantly higher scaling rates have been obtained when the analysis is conducted 

at the level of single season (Wet and Dry Season) with respect to the entire hydrological year 

(Unique Season), demonstrating the importance, in regions characterized by a high seasonality in 

climate (especially in temperature), of distinguishing the different seasons.  

Nevertheless, for all the seasons (including the Unique Season) and durations (from 10 minutes to 

1 hours), the majority of the gauges have shown rates below the theoretical CC-rate, in accordance 

with the few studies present in literature for arid and semi-arid regions (Pall, Allen, & Stone, 2007; 

Wentz, Ricciardulli, Hilburn, & Mears, 2007; O'Gorman & Muller, 2010; Sherwood, Roca, 

Weckwerth, & Andronova, 2010).  

This study has also highlighted the importance of using appropriate modeling assumptions in the 

estimation of the scaling rate. The scaling rate appears to be influenced by the number of bins in 

which the temperature domain is subdivided to derive the extreme rainfall values (percentiles for each 

bin). Nevertheless, a higher weight can be addressed to the choice of the percentile to define extreme 

rainfall. 

The adoption of alternative approaches, such as the Piecewise Regression or the pooled gauges - 

LOESS based - approach, has allowed to better characterize the elaborate temperature dependence of 

extreme rainfall in Sicily, finding various scaling rates for different sub-domains of temperature, and 

identifying often a peak-like behavior, not detected by the simple application of the Exponential 

Regression, that could be addressed to the atmospheric moisture supply limitations for the highest 

temperatures of the Dry Season. Differently from what observed with the exponential regression, the 

Two-Segment Piecewise Regression analysis has been also capable to detect super CC rates for 

Unique Season samples with regard to limited temperature range.  
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