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Abstract

The emerging usage of connected vehicles promises new business models and a high level
of innovation, but also poses new challenges for the automotive domain and in particular for
the connectivity dimension, i. e. the connection between vehicles and cloud environments
including the architecture of such systems. Among other challenges, IoT Cloud platforms
and their services have to scale with the number of vehicles on the road to provide func-
tionality in a reliable way, especially when dealing with safety-related functions. Testing
the scalability, functionality, and availability of IoT Cloud platform architectures for con-
nected vehicles requires data from real world scenarios instead of hypothetical data sets
to ensure both the proper functionality of distinct connected vehicle services and that the
architecture scales with a varying number of vehicles. However, the closed and proprietary
nature of current connected vehicle solutions aggravate the availability of both vehicle data
and test environments to evaluate different architectures and cloud solutions. Thus, this
paper introduces an approach for connecting the Eclipse SUMO traffic simulation with the
open source connected vehicle ecosystem Eclipse Kuksa. More precisely, Eclipse SUMO
is used to simulate traffic scenarios including microscopic properties like the position or
emission. The generated data of each vehicle is then be sent to the message gateway of the
Kuksa IoT Cloud platform and delegated to an according example service that consumes
the data. In this way, not only the scalability of connected vehicle IoT architectures can
be tested based on real world scenarios, but also the functionality of cloud services can be
ensured by providing context-specific automotive data that goes beyond rudimentary or
fake data-sets.

M. Weber, L. Bieker-Walz, R. Hilbrich and M. Behrisch (eds.), SUMO2019 (EPiC Series in Computing, vol.
62), pp. 213–229
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1 Introduction

Within the automotive domain, sensors are the basis for a variety of functionality as they allow
to gather detailed context information about a vehicle and its environment to detect specific
events of interest like environmental conditions or unusual vehicle motion [8]. Nowadays, the
increasing number of different sensor types within vehicles that emerge, for instance, from on-
going development in autonomous driving, leads to an exponential growth in data generated
by vehicles. For example, according to Hitachi [27], vehicles already create up to 25GB of
data per hour. At the same time, technological advances and area-wide mobile Internet have
transformed vehicles into connected vehicles [8]. In this way, vehicles continually increase their
functionality by interacting with their environment and sharing data among people, businesses,
service providers, or OEMs within the context of the Internet of Things (IoT).

From a technical point of view, the extraction, storage, processing, and analysis of vehicle
data within the IoT is the basis for data-driven business models and an important factor for
future innovation. The Big Data processing capabilities of the cloud and the fusion with infor-
mation obtained from other sources, e. g. smart city [20], allows to extract additional knowledge
and create valuable connected vehicle services. In particular areas like road safety or smart and
green transportation benefits from an additional connectivity dimension within vehicles. From
a market point of view, connectivity-enabled vehicles are expected to be the next frontier in
automotive revolution [19] as they promise a high degree of data-monetization and value cre-
ation based on disruptive business models and innovative, data-driven mobility services, e. g.
location-dependent services like route optimization to reduce traffic congestion [29].

The rapid growth and the tremendous number of connected vehicles on the road makes the
connected vehicle domain a major element of the IoT and leads to new requirements regard-
ing vehicular networks and data processing in the cloud [8]. Thereby, designing scalable and
reliable software architectures is one of the main challenges [29] which requires further domain
knowledge. Providing an abstraction of those topics to developers and manufacturers through
an open platform for connected driving helps to pave the way for supporting various application
domains, spanning from road safety over smart, efficient and green transportation to location-
dependent services [19]. Those services operate on different complexity levels and range from
batch processing to real-time analysis that is fed back to the vehicle. The open-source project
Eclipse Kuksa [13] aims to create a platform for establishing connected vehicle ecosystems.

As connected vehicles operate in a safety-critical and time-sensitive environment with chang-
ing conditions, they require reliable connected vehicle services. This is especially the case for
safety-related applications such as cloud-based wrong-way driver warning or hazard identifica-
tion. Among other challenges like privacy and security, it is thus inevitable to extensively test
and evaluate the functionality of the according hardware and software components. This also
includes the appropriate evaluation that the used IoT Cloud platforms and their services scale
and still function with the high number of vehicles on the road, especially during peak hours.
However, setting up a large number of hardware and vehicle nodes for evaluating the scalability
of IoT components may not be practical due to economical and operational constraints [4].
Furthermore, using real hardware and vehicles can be challenging as it requires specific exper-
tise and domain knowledge. The effort for setting up such an evaluation environment may then
prevent the developer from focusing on the actual application and possible innovation especially
for developers that come from another domain.
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One way to overcome these challenges is the usage of appropriate simulators. In general,
simulators allow for a proof-of-concept design and evaluation of connected vehicle services by
spanning both virtual and physical domains. While simulations on a macroscopic level allow
to simulate average vehicle dynamics such as traffic density, microscopic simulations are lo-
cated on a more detailed level by modeling each vehicle and its dynamics individually [18]. For
testing the scalability of IoT Cloud platform components, a macroscopic traffic simulation or
in some cases even using dummy data would be suitable. But for validating the functionality
of connected vehicle services, application and service developers require vehicle-specific data
from real-word scenarios. Moreover, the creation of training data for machine learning based
approaches is another use case that requires vehicle-specific data. In this way, the detection
of vehicle or traffic specific scenarios can be trained and the performance of actions based on
these findings can be enhanced.

The open-source traffic simulation suite Eclipse SUMO1 is designed for microscopic simula-
tions and supports, among other things, large road networks and the modeling of intermodal
traffic systems including vehicles, public transport, and pedestrians. Eclipse SUMO is well
established in the research community and provides real-world scenarios from areas such as
Luxembourg [5, 6], Bologna [1], Cologne, and Monaco [7]. In this paper, we investigate how to
connect Eclipse SUMO as a simulator with the connected vehicle platform Eclipse Kuksa. More
precisely, we present an early approach on how to use a simulator for sending telemetry data
via MQTT to an IoT gateway of an connected vehicle ecosystem. In this way, the scalability
and functionality of connected vehicle services can be tested and evaluated on different levels
with vehicle-specific data from real-world scenarios. We further demonstrate the approach with
a small example and discuss current limitations.

The remainder of this paper is organized as follows: Section 2 reviews related work, while
Section 3 gives an overview about Eclipse Kuksa. Section 4 then shows how to connect Eclipse
SUMO with the Eclipse Kuksa Cloud to store vehicle-specific data from a SUMO simulation
into an appropriate database. Afterward, Section 5 introduces a small example of a cloud-based
connected vehicle service that will be used as basis for testing the service’s functionality via
the available simulation data set. Section 6 then discusses the results and current limitations,
while Section 7 concludes this work.

2 Related Work

This section provides a brief review of related work on connected vehicles, academia IoT
Testbeds, and existing traffic simulations with a focus on freely available solutions.

2.1 Connected Vehicles Landscape

A survey by Siegel et al. [26] on connected vehicle landscapes addresses enabling technologies,
applications, and development areas. They outline that technologies such as sensors or intra-
vehicle as well as inter-vehicle connectivity are the enablers of connected vehicles, which are
facilitated by decreasing the power, cost, and scalability requirements [26].

1http://sumo.dlr.de
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A similar research [19] argues that vehicle-to-infrastructure (V2I) and vehicle-to-roadside (V2R)
is also necessary to accomplish connected vehicles. Other researchers [8] present that these new
requirements, e. g. scalability and security, that raised from connected vehicles have changed
the concept of vehicular ad-hoc networks (VANETs) to a new concept called Internet of Vehi-
cles (IoV). IoV enables dynamic information services, intelligent vehicle control, and increased
productivity due to a reduced traffic congestion [8].

2.2 IoT Testbeds

Simulation has many advantages [25] for the usage in connected vehicles environments. For
example, the behavior of systems can be compared to that of the real system under study.
In addition, with simulations, it is easier to comprehend and justify to management. In that
regard, Chernyshev et al. [4] present a comparative analysis about existing simulators and
testbeds for the Internet-of-Things (IoT). Their study covers three categories of simulators: (i)
full stack simulators; (ii) big data processing simulators; and (iii) network simulators. Never-
theless, none of the considered simulators is specifically designed to simulate traffic scenarios
on a microscopic level and to provide vehicle-specific data.

Datta et al. [9] present a testbed architecture for connected vehicles that integrates an end-to-
end connected vehicle stack. Another study [14] proposes a multi-agent based extension of a
simulator to model complex interactions between cooperative vehicles, e. g. Advanced Driver
Assistance Systems (ADAS) adjusting to traffic conditions, information exchange with the in-
frastructure, and V2V communication. As mentioned before, a challenge in the context of
connected vehicles is to provide a scalable, extensible and secure Cloud framework that hosts
the connected vehicle services. Many of the simulation testbeds (e. g. [9]) are based on real data
from an existing car, though it considers only a single connected vehicle due to non-availability
of multiple vehicles. Thus, they are not a viable choice for testing scalability requirements.

2.3 Traffic Simulators

Due to ongoing research and development activities in the area of intelligent transportation
systems (ITS), a variety of both commercial and open source simulation tools are available.
Li et al. [17] compare different traffic simulators, namely GAMA and SUMO, for multi-modal
scenarios in urban environments. The authors conclude that SUMO is generally more suitable
for multi-modal simulations, but they also found some minor limitations such as deadlocks or
that the realism of the simulation is not always up to the task.

CupCarbon2 allows to simulate mobility based on real world maps, but focuses more on the
geographic mobility flow of simulated devices [2].

For the simulation and evaluation of applications and algorithms around connected driving
there is also the VSimRTI framework [22] which integrates SUMO. However, VSimRTI is so
far not designed for the integration with real-world cloud instances including the usage of the
actual protocols that are used for the communication with the cloud.

2http://www.cupcarbon.com/
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3 Eclipse Kuksa

The Eclipse Kuksa project3 wants to establish an open source ecosystem for connected vehi-
cles [13]. Kuksa offers a platform for an open and collaborative development of solutions and
services in the automotive domain. The openness of the Kuksa ecosystem enables actors from
different domains and companies to work collaborative in order to foster innovation and new
business models. One part of the Eclipse Kuksa project is a run-time infrastructure that is
supposed to run within vehicles and enables developers to easily create and deploy applications
to the vehicle. Moreover, Eclipse Kuksa provides an online-IDE to ease the development of
in-vehicle applications by free an individual software developer from setting up his personal
work environment. This IDE is based on the Eclipse Che [11] project. The third part of Eclipse
Kuksa is the Eclipse Kuksa Cloud, which bundles services that enable the vehicle-applications
to interact with a cloud environment to provide more value and information to the occupants
of the vehicle. Since the focus of this paper is testing and evaluating cloud-based connected
vehicle services, the following description focuses on the Kuksa Cloud.

Figure 1: The components of the Eclipse Kuksa platform [13]

The Eclipse Kuksa Cloud4 consists of multiple services that are combined together in a mi-
croservice architecture to allow the management of vehicles and the analysis of vehicle data.
One goal for the Eclipse Kuksa Cloud is to provide a flexible environment for evaluation pur-
poses that can be turned into productive use without many challenges. Therefore, one aspect
is the licensing of the Eclipse Kuksa Cloud components which are mostly released under the
Eclipse Public License. As shown in Figure 2, the entry point to the cloud platform is a message
gateway which connects the vehicles and other devices with the cloud services in a scalable and
unified way. For doing so, the gateway accepts, sends, and receives messages from and to the
vehicles. Within the Eclipse Kuksa Cloud, Eclipse Hono [21] act as message gateway by provid-
ing protocol adapters for MQTT, HTTP, and CoAP. Other cloud services connect with Eclipse
Hono over the AMQP 1.0 protocol. For instance, the current version of the Eclipse Kuksa

3https://www.eclipse.org/kuksa/
4https://github.com/eclipse/kuksa.cloud
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Cloud consists of a connector5 between Eclipse Hono and the time-series database InfluxDB
[16] allows to store all messages received by Eclipse Hono. It is then possible for other services
to fetch the information from the received messages from the database for further processing
and visualization. One example for such a service is an instance of Grafana which visualizes
the vehicle related information like speed, number of revolutions or the state of the engine.

Figure 2: The Kuksa Cloud environment

Another service that is part of the Eclipse Kuksa Cloud is Eclipse hawkBit [15]. With Eclipse
hawkBit one can control, plan, and distribute software updates and manage the software ver-
sioning on devices. Such updates either involve some components or the whole firmware of
those. On top of Eclipse hawkBit an implementation of an app-store is provided. This app-
store allows the owner of the vehicle to install applications for the vehicle which execute in
the in-vehicle run-time environment. Authentication and authorization are important for the
overall Eclipse Kuksa platform as well. This involves, but is not limited, to securing the access
to vehicle information, the APIs of Eclipse Hono, and the app-store. Therefore, Keycloak is
integrated in the Eclipse Kuksa Cloud platform and acts as authentication and authorization
server. For future releases of the Eclipse Kuksa Cloud, it is planned to integrate Eclipse Ditto
[10]. With Eclipse Ditto it is possible to get an abstract API for the representation of a device’s
state such as a vehicle. This concept is also referred to as ”digital twin”.

4 Connecting SUMO to Kuksa

This section shows how to connect SUMO with Eclipse Kuksa via a Python script. The reasons
for choosing Eclipse SUMO as simulator are manifold. Among other advantages, Eclipse SUMO
(i) provides a lot of modeling tools and APIs; (ii) fosters real-world scenarios and data sets;
and (iii) supports a subset of vehicle information. Furthermore, the open-source Traffic Control
Interface (TraCI) is an TCP based interface that allows to control Eclipse SUMO simulations
[28]. Via the TraCI API, values of simulated objects can be retrieved and also their behavior
can be altered. TraCI relies on a client/server architecture with Eclipse SUMO acting as server
that serves multiple TraCI clients. For vehicles, a variety of values can be retrieved, e. g. the
geolocation or the current speed.

5https://github.com/eclipse/kuksa.cloud/tree/master/utils/hono-influxdb-connector
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Figure 3: Data flow and technology stack for the SUMO-Kuksa bridge

Figure 3 depicts the proposed approach for bridging Eclipse SUMO with Eclipse Kuksa. To
obtain data from the Eclipse SUMO simulation and send data to the cloud, a Python script
based on TraCI is used. As a starting point, we used the runner.py script from the TraCI tuto-
rial6 and modified it to establish a connection with the Eclipse Kuksa Cloud. This allows us to
send vehicle-specific simulation data via MQTT to a message gateway and store it in a remote
database. As shown in Listing 17, the main function is doing two different things. At first, the
connection to the Hono messaging gateway within the Eclipse Kuksa Cloud is established in the
connect to message gateway() function. For doing so, we use the Eclipse Paho MQTT client
[12], which provides a client-side open-source implementations of MQTT. The client receives
a CONNACK response from the server and can subscribe to the control/+/+/req/# topic to
receive Command & Control messages from business applications in the cloud. Although Com-
mand & Control is not in the focus of this paper, it allows the integration of further use cases
and thus we included it. After the MQTT connection is established, we run the simulation
and obtain vehicle-specific data via TraCI. Within the run() function, the simulation is started
and controlled via TraCI. For each simulation step, different data from each available vehicle
is retrieved through the TraCI API and then transformed into a JSON object. By using the
publish() function of the Eclipse Paho client, we can send the JSON objects via the telemetry
topic to the message gateway (Eclipse Hono) of the Eclipse Kuksa Cloud. Eclipse Hono then
delegates the incoming messages to the previously described HonoInfluxConnector (cf. Sec-
tion 3), which processes the data and writes it into an InfluxDB. Figure 4 contains some log
messages that show how the simulated data is actually consumed by the cloud service.

Figure 4: Incoming telemetry data is stored in a database via the HonoInfluxDBConnector

6https://github.com/eclipse/sumo/tree/master/tests/complex/tutorial/traci_tls
7Note that we just show an extract of the script to omit irrelevant details
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Listing 1: Phyton script for sending simulation data from Eclipse SUMO to the cloud

c l i e n t = mqtt . C l i en t ( c l i e n t i d=”c” , c l e a n s e s s i o n=True , userdata=None , p ro to co l
=4, t r anspo r t=” tcp ” )

t o p i c t o pub l i s h = ” te l emetry ”
t o p i c t o s u b s c r i b e = ” con t r o l /+/+/req/#”

i f name == ” main ” :
connect to message gateway ( )
run ( )

def connect to message gateway ( ) :
c l i e n t . r e i n i t i a l i s e ( c l i e n t i d=”c” , c l e a n s e s s i o n=True , userdata=None )
c l i e n t . username pw set ( username , password )
c l i e n t . on connect = on connect
c l i e n t . connect ( host , port , 60)
c l i e n t . l o o p s t a r t ( )

def run ( ) :
s tep = 0
while t r a c i . s imu la t i on . getMinExpectedNumber ( ) > 0 :

t r a c i . s imulat ionStep ( )
for veh i c l e ID in t r a c i . v e h i c l e . ge t IDLi s t ( ) :

co2emiss ion = t r a c i . v e h i c l e . getCO2Emission ( veh i c l e ID )
noxemiss ion = t r a c i . v e h i c l e . getNOxEmission ( veh i c l e ID )
i f noxemiss ion > 0 or co2emiss ion > 0 :

speed = t r a c i . v e h i c l e . getSpeed ( veh i c l e ID ) ∗3 .6
x , y = t r a c i . v e h i c l e . g e tPo s i t i on ( veh i c l e ID )
long i tude , l a t i t u d e = t r a c i . s imu la t i on . convertGeo (x , y )
j s on data = json . dumps({ ’ Veh ic l e ID ’ : veh ic le ID , ’ Speed ’ : speed

, ’ Lat i tude ’ : l a t i t ude , ’ Longitude ’ : l ong i tude , ’
CO2 Emission ’ : co2emiss ion , ’ NOx Emission ’ : noxemiss ion })

c l i e n t . pub l i sh ( t op i c t o pub l i s h , j son data , 0 , Fa l se )
s tep += 1

t r a c i . c l o s e ( )
sys . s tdout . f l u s h ( )

5 Using Eclipse SUMO in the Eclipse Kuksa Application
Development Process

This section shows how Eclipse SUMO can be facilitated to evaluate the functionality of a
connected vehicle service. We do that by sketching the development process of a fictitious
developer who develops a new application for Eclipse Kuksa and uses Eclipse SUMO to test
his application. Even though the developer is purely fictional, the experience described in this
section is real and collected while the authors where testing the approach described in this
paper. Lets assume that the developer is about to implement a new service for the Eclipse
Kuksa Cloud which uses collected vehicle data to approximate the air quality in a city. A
major part of the development efforts is to test the application and check its behavior under
different conditions. Collecting real life data is hard as it is barely possible to setup a controlled
environment. However, by simulating the traffic and using the simulated data, it is easy to
setup defined conditions and, for example, increase the traffic in certain areas of a city.
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5.1 Implementing a Service

The first step for the developer is to actually implement the Air Quality Monitor service, which
visualizes the air pollution for certain areas such as cities, districts etc. The idea of the service
is to help municipalities to get an almost real-time overview of the current pollution situation.
Therefore, the Air Quality Monitor service visualizes the air quality on a real-world heatmap.
In general, a heatmap visualizes the intensity of data at geographical points. The service al-
lows to display CO2 and NOx pollution for a certain area in two ways: On the one hand, a
real-time view shows the current emission for each vehicle every 5 seconds, while on the other
hand an aggregated view visualizes the aggregated pollution for any time interval. The service
is implemented as a Java-based Spring application [3]. Figure 5 shows the corresponding class
diagram of the Air Quality Monitor service.

InfluxDBClient

-influxDB: InfluxDB
-dbName: String

getVehicleData(query: String): List<VehicleDTO>

VehicleDataController

+getCurrentVehicleEmissions(): List<VehicleDTO>
+getAggregatedVehicleEmissions(interval: int): List<VehicleDTO>

VehicleDTO

-time: Instant
-vehicleID: String
-speed: Double
-latitude: String
-longitude: String
-noxEmissions: Double
-co2Emissions: Double

1

Figure 5: UML class diagram of the Air Quality Monitor service

To work as expected, the service requires at least information about the current geo-location
and a rough estimation about the vehicle emissions, e. g. via comparative data. Accordingly, the
VehicleDTO consists of different attributes such as longitude and latitude for the geo-location
as well as the NOx and CO2 emission in mg and a time stamp for every measurement. The
service consumes such data via the Eclipse Kuksa Cloud backend. Once deployed on a produc-
tive instance of Eclipse Kuksa, the service would receive this data through Eclipse Hono and
from an application running in the Eclipse Kuksa In-vehicle platform. As the visualization is
planned to be accessible on a web page, the required data points are published via a REST API
implemented in VehicleDataController. The controller offers two RESTful interfaces, namely
getCurrentVehicleEmissions() and getAggregatedVehicleEmissions(). The former one
returns the current, respectively the latest, available measurement data for each vehicle from
the last 15 minutes (cf. Listing 2), while the latter one returns the aggregated emission data
of each vehicle for a given time interval, e. g. the last 30 minutes. Both endpoints delegate the
according database query to an instance of InfluxDBClient, which retrieves the data from the
database based on an InfluxDB Java libary8. Listing 3 shows the respective method.

The view of the single-page application is based on HTML, CSS, and JavaScript and runs
on an embedded Tomcat web server. Via JavaScript, data from the RESTful interfaces are
fetched to visualize them on a heatmap. The heatmap relies on the Google Maps JavaScript
Heatmap Layer API9 and can be built by transforming the vehicle data to according points on
the heatmap. A point consists of the geolocation (latitude, longitude) and an optional weight-

8https://github.com/influxdata/influxdb-java
9https://developers.google.com/maps/documentation/javascript/heatmaplayer
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ing for controlling the intensity. For both, the NOx and CO2 emissions, an appropriate weight
is added that is derived from the given values of both attributes (for NOx, we use the current
value, while the CO2 values has to be reduced by factor 10). In this way, different degrees of
emissions can be taken into account.

Listing 2: RESTful interface for providing vehicle-specific emission data

//Vehic l eDataContro l l e r
@RequestMapping ( ”/ getCurrentVeh ic l eEmiss ions ( ) ” )
public List<VehicleDTO> getCurrentVeh ic l eEmiss ions ( ) {

return in f luxDBServ ice . getVehic leData ( ”SELECT Longitude , Latitude , CO2 Emission
, NOx Emission , l a s t ( NOx Emission ) FROM cologne WHERE time > now( ) − 15m
group by Vehic l e ID ” ) ;

}

Listing 3: Querying for vehicle data via InfluxDB Java API

// Inf luxDBClient
public List<VehicleDTO> getVehic leData ( S t r ing query ) {

QueryResult r e s u l t = influxDB . query (new Query ( query , dbName) ) ;
InfluxDBResultMapper resultMapper = new InfluxDBResultMapper ( ) ;
return resultMapper . toPOJO( r e su l t , VehicleDTO . class ) ;

}

5.2 Setting up the Test Environment

After implementing the first version of the Air Quality Monitor service, the next step is to
actually check if the service behaves as expected. Therefore, the developer is setting up a test
environment as described in Section 4 to generate data that simulates a real world scenario.
The test environment is described in the following paragraphs.

Eclipse SUMO Eclipse SUMO runs in version 1.1.0 (Build Windows-6.3.9600) on a local
windows 10 machine with a Intel CoreTM i7-5600U CPU at 2.60GHz and 16GB RAM. The
TRaCi script is executed in a Python 3.6.4 environment. The reason for running Eclipse SUMO
on a local machine is the availability of a GUI to see what happen at the simulation and the
Air Quality Monitor at the same time.

Scenarios A minor drawback for the usage of simulators is the availability of properly-working
and free scenarios. However, Eclipse SUMO has already several real-world and open-source
scenarios available, namely:

• The real world traffic scenario from the city of Bologna10 covers the area around the
football stadium and was set up to simulate the mobility of big events such as football
matches or concerts [1].

• The Monaco SUMO Traffic (MoST) Scenario is based within the Principality of Monaco
with the city covering an area of 2 km2, while the greater area is about 22 km2 with a
total of 350 km of street lengths [7]. Due to the various tunnels and bridges, it fosters a
multidimensional environment with directional traffic congestion between the inner city
and the greater area.

10https://sourceforge.net/projects/sumo/files/traffic_data/scenarios/Bologna_small/
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• The TAPASCologne scenario simulates the traffic for the city of Cologne over a period of
one day. The scenario is considered as one of the largest freely available traffic simulation
data sets with nearly 11455 km of lanes. However, as mentioned at the official Eclipse
SUMO wiki, the scenario is only hardly usable and needs further improvements regarding
the network quality to make it realistic and complete.11

• The Luxembourg SUMO Traffic (LuST) Scenario12 is located at the city of Luxembourg
and covers an area of almost 156km2 with 930 km of roads and a total number of 288.250
vehicles over 24 hours. The traffic demand includes morning and evening rush hour peaks
around 08:15 and 18:30.

As the LuST scenario is not compatible with Eclipse SUMO versions > 0.2613 and the
Bologna scenario does not provide any geolocation, the scenarios of Monaco and Cologne (6:00
and 8:00 (am)) are used for testing his service. However, due to the limitations described for
the TAPASCologne scenario, the scenario is used with caution.

Cloud The Eclipse Kuksa Cloud is deployed within an Azure Kubernetes Service (AKS)14

cluster with Eclipse Hono in version 0.8, whereas the Air Quality Monitor service is running
on a Ubuntu 16.04 virtual machines with 4 CPUs, each 3,5GHz, and 8GB RAM. The complete
deployment of the service is depicted in Figure 6.

«artifact»
:emissionView.war

«execution environment»
:Tomcat

«execution environment»
:Java

«artifact»
:Measurement

«execution environment»
:InfluxDB

«artifact»
:SmartEmission

Service.jar

«device»
:Application Server «device»

:Web Server
«device»

:DB Server

«protocol»
RESTful HTTP

«protocol»
HTTP

Figure 6: UML deployment diagram of the Air Quality Monitor service

5.3 Testing the Service

With the previously described test setup the developer is now able to run tests on his service.
To have a variety of data sets, simulations on the cities of Monaco and Cologne are executed.
The simulated data helps the developer already to have an early feedback in the development
process as well as helpful insights into the real live behavior of his service. Running the different
scenarios for a few minutes already produces a large number of data entries, e. g. for the Cologne
scenario, 1.532.783 MQTT messages have been sent to the cloud between 06:00 and 06:15 in
the traffic simulation. The following paragraphs depict the different problems that occurred
when testing the service scalability and functionality.

11https://sumo.dlr.de/wiki/Data/Scenarios/TAPASCologne
12http://vehicularlab.uni.lu/lust-scenario/
13https://github.com/lcodeca/LuSTScenario/issues/8
14https://azure.microsoft.com/de-de/resources/videos/azure-kubernetes-service-overview/
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Storage The first problem is that the initial database schema was not designed for querying
large data sets in an efficient and flexible way. Thus, the developer reconsiders the schema
and models vehicleID as a Tag, while all the other values remain as fields. In InfluxDB, Tags
represent meta data which are indexed and thus supports performant querying. Furthermore,
Tags are suitable for queries that include, for example, GROUP BY(). By this first finding,
the developer was able to considerably improve the response time of the service.

Presentation Another problem with the initial service design relates to the presentation on
the map. While for a smaller amount of vehicles the heatmap is clear, the map gets unclear
and overcrowded with larger amounts of vehicles (cf. Figure 7). This is due to the fact that
the initial weighting of the heatmap points is too coarse-grained. By changing the weighting
dynamically to the amount of vehicles, a clear and scalable view is provided.

API Usage In addition to that, the real-time view does not update the heatmap points
properly when a simulation is running at the same time. This behavior is caused by a wrong
usage of the Heatmap Layer API (the view updated before the asynchronous call returned
back), but with permanently changing vehicle data due to the running simulation, debugging
the issue is much easier for the developer.

Figure 7: Unclear map at a scale of 19.244 vehicles

6 Discussion

Based on the results from the previous sections, this section discusses benefits of the proposed
approach, but also current limitations.

6.1 Test Setup & Results

Installing and configuring Eclipse SUMO with TraCI to send data to the cloud was, thanks to
the extensive documentation and examples, quite easy. Once set up, already available real-world
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scenarios can be executed without any additional configuration effort. The documentation and
the available scenarios are both an result of the community around the Eclipse SUMO project
which is an advantage for using Eclipse SUMO in adjacent domains like the testing of connected
vehicle application. Therefore, Eclipse SUMO seems to be a really good fit to the aim of Eclipse
Kuksa to break the silos between different actors and domains around the topic of connected
vehicles. In this case, a developer with a background from cloud computing can focus on his
applications while benefiting from the experience from the traffic simulation domain.

In general, the Eclipse Kuksa cloud by means of Eclipse Hono and the HonoInfluxConnec-
tor scaled well with the large data sets obtained from the different scenarios, but the scalability
of Eclipse Hono was already proven in [23]. In contrast, testing the first version of the Air Qual-
ity Monitor service indicated different problems that were not considered when designing the
architecture and implementing the service. One example is the improved heatmap in Figure 8,
which better scales with larger amount of vehicles on the road. Another thing we improved is
the querying of large and changing data sets, e. g. querying for the current emission and geo-
location values of all vehicles within the Cologne scenario (06:00-06:15am) gives us 992 different
vehicle data sets back within a decent time (125-1.600ms). At the same time, the finding of
those issues in the developed service indicates how helpful the usage of Eclipse SUMO was in
the testing process to get a fast feedback on the current implementation.

Figure 8: Air Quality Monitor for Cologne

6.2 Current Limitations

Real-Time Support Providing real-time support, for example to test safety-critical services,
is always a challenge and needs thorough investigations. For most more complex scenarios,
Eclipse SUMO does not provide its results in real-time in respect to the ”real-world” clock of
the actual cloud services that are not part of the simulated world. But for evaluating the cloud
architecture and services regarding their responsiveness and reaction time, the requests need to
be created with realistic timing in the real world. It should be possible to record data which
is then replayed using time-stamps from the simulation. But the services in the cloud can also
send control information to the vehicle. Those control commands interfere with the simulation
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and its results. Hence, the control information needs to be provided to Eclipse SUMO during
the simulation run-time to allow a more realistic evaluation of the overall Eclipse Kuksa system.

Simulation Time Running the simulation on a local machine with limited resources is for
large scenarios not suitable as the simulation gets really slow at a certain point. Because of
that we might use more powerful computing resources from a cloud provider in the future to
execute the simulation. However, for extensive tests of the cloud capabilities, we mostly need
data from larger scenarios. For some test cases the granularity of the information processed
and provided in the Eclipse SUMO simulation could already be too high for the needs of the
service to test. At the same time computing that information consumes huge parts of the
computational resources. Since the needed granularity is highly dependent on the service one
can not make a general statement about this.

Additional Features For our approach and the testing of the Eclipse Kuksa platform, we
could facilitate additional functionality around the features provided by Eclipse SUMO itself.
For instance, in a real-world deployment the Eclipse Kuksa In-Vehicle platform allows to run
application within the vehicle. Thus, it would be valuable to simulate the execution of applica-
tions in the vehicle. Also the integration of advanced sensor technology in vehicles to provide
additional environment data like weather conditions on the road would be valuable, especially
when dealing with safety-related applications such as a cloud-based hazard warning.

Creation of Complex Scenarios One drawback of using Eclipse SUMO for testing is that
setting up and tuning an individual scenario can become pretty complex and time consuming.
This is especially the case for developers that are not experienced with Eclipse SUMO which
might be the case for many cloud developers. Even though there are a couple of tools for
creating a scenario, the risk of introducing major errors and issues in the simulation is rather
high. This is especially the case for larger scenarios that are at the same time more interesting
for the testing of most cloud services. In exchange, the overhead of creating fitting scenarios is
mitigated a bit by the number of scenarios that are already available.

7 Conclusion

With an emerging number of connected vehicles on the road, scalable and reliable service im-
plementations are required that keep working under changing conditions. Nevertheless, testing
cloud-based services for connected vehicles is still a challenge due to the non-availability of large
and flexible real-world data sets. In this paper, we presented an early approach for bridging the
gap between the traffic simulator Eclipse SUMO and the connected vehicle ecosystem Eclipse
Kuksa by sending and storing vehicle-specific simulation data to a remote database via MQTT.
Based on an exemplary Air Quality Monitor service, we demonstrated how to use simulation
data for testing the scalability and functionality of connected vehicle services within the cloud.
We were able to test different components of a connected vehicle ecosystem with a particular
focus on validating the functionality of connected vehicle services. Testing the ecosystem with
large and different real-world simulation data facilitates improving services regarding flexibility,
efficiency, and visualization. In addition, we discussed the benefits of our approach and current
limitations. As soon as all software used for this article is IP checked, the source code will be
made available at the Eclipse Kuksa repository15.

15https://github.com/eclipse/kuksa.apps
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For the future, we are planning to extend our current approach in different aspects. Although
the Air Quality Monitor service provided a solid evaluation basis for our proposed approach,
we noticed that we need a more sophisticated connected vehicle service which considers even
more the nature of connected vehicles. This includes, for example, the integration of other data
sources, e. g. from the smart city, for the reason of data refinement. Also the integration of
Command & Control functionalities to implement, for example, a cloud-based platooning ser-
vice for trucks would be valuable. Simpla16, a platooning plugin for the TraCI Python client,
could be used to define and control the behavior of platooning vehicles. Another framework in
this regard is PLEXE [24], which is an Open Source extension to Veins for the simulation of
platooning systems in realistic scenarios.

As mentioned in Section 6, one drawback for our approach is that Eclipse SUMO does not
deliver its results in real-time from the perspective of the cloud. For sending telemetry in-
formation from the vehicle to the cloud, we might evaluate how this gap could be closed by
recording the data from the simulation and replaying it to the cloud afterward. However, we
need to further investigate how to support Command & Control features where the cloud in-
terferes with the simulation and its results by sending commands to the vehicles. In such cases,
the cloud testing can not be done after the simulation because the results from the simulation
depend on the input from the cloud service.

Another aspect is that the current setup neglects the effects of the communication link be-
tween the vehicles and the cloud backend, which could be considered for end-to-end scenarios.
This and more functionality is provided by simulation run-times that couple Eclipse SUMO
with simulators from other domains. For future work we plan to investigate ways to use such
a framework like VSimRTI [22] to further improve the evaluation of the Eclipse Kuksa platform.

Moreover, the implementation and evaluation with different simulation scenarios would foster
additional insights about our approach. It is furthermore interesting and necessary to inves-
tigate how our approach and Eclipse SUMO could be integrated with existing test processes,
pipelines, and frameworks that are commonly used in the development of cloud applications.
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