
Translating Higher-Order Specifications to Coq

Libraries Supporting Hybrid Proofs

Nada Habli1 and Amy P. Felty1,2

1 Department of Mathematics and Statistics, University of Ottawa, Canada
2 School of Electrical Engineering and Computer Science, University of Ottawa, Canada

nhabl094@uottawa.ca, afelty@eecs.uottawa.ca

Abstract

We describe ongoing work on building an environment to support reasoning in proof
assistants that represent formal systems using higher-order abstract syntax (HOAS). We
use a simple and general specification language whose syntax supports HOAS. Using this
language, we can encode the syntax and inference rules of a variety of formal systems, such
as programming languages and logics. We describe our tool, implemented in OCaml, which
parses this syntax, and translates it to a Coq library that includes definitions and hints for
aiding automated proof in the Hybrid system. Hybrid itself is implemented in Coq, and
designed specifically to reason about such formal systems. Given an input specification,
the library that is automatically generated by our tool imports the general Hybrid library
and adds definitions and hints for aiding automated proof in Hybrid about the specific
programming language or logic defined in the specification. This work is part of a larger
project to compare reasoning in systems supporting HOAS. Our current work focuses on
Hybrid, Abella, Twelf, and Beluga, and the specification language is designed to be general
enough to allow the automatic generation of libraries for all of these systems from a single
specification.

1 Introduction

The Hybrid system [4] provides support for reasoning about object languages (OLs) such as
programming languages and other formal systems using higher-order abstract syntax (HOAS).
In [4], two versions of Hybrid are described, one implemented in Isabelle [8], and one imple-
mented later in the Coq Proof Assistant [1] by fairly directly porting the Isabelle version to Coq.
We focus on the Coq version here. Hybrid provides support for encoding syntax, for represent-
ing the semantics via inference rules and axioms, and for reasoning about the properties of the
OL. For example, reasoning about the metatheory of a programming language allows important
properties, such as soundness, to be established formally. Such properties are important for
providing assurance that a language can be used to build reliable and secure software systems.

The general Hybrid infrastructure is implemented as two Coq libraries. The first provides
an underlying de Bruijn representation of λ-terms parameterized by a set of constants for a
particular OL. This layer is hidden from the user. This library includes a set of definitions and
lemmas that builds an HOAS layer from this lower level, which is used to encode the syntax
of OLs. The only axiom used in the implementation is the law of excluded middle, included
by importing Coq’s library for classical logic.1 The reasoning infrastructure has multiple levels
also. The inference rules of an OL are defined at the lowest level as logic programming-like
clauses (called prog clauses here) that are provided as a parameter to an intermediate logic,

1This library was originally imported in order to keep the Coq implementation close to the Isabelle one. It
is in fact not necessary. See [2] for a constructive version of Hybrid in Coq.

J.C. Blanchette, J. Urban (eds.), PxTP 2013 (EPiC Series, vol. 14), pp. 67–76 67

Translating Higher-Order Specifications Habli and Felty

called a specification logic (SL). The second Coq library implements the SL. At the highest level
is the reasoning logic, which is Coq.

This paper presents our tool for supporting reasoning in Hybrid by translating high-level
specifications of OLs to Coq libraries. Our specification language has three sections, Syntax,
Judgments, and Rules. The first section contains the specification of new constants and their
types, representing the basic syntax constructors of the OL. The allowed types are a subset
of the types of the simply-typed λ-calculus. In HOAS, object-level binding is encoded directly
using meta-level binding, and thus arguments to constructors are allowed to have function types.
We restrict to second-order types, which means that the functions appearing as arguments must
themselves take arguments of atomic types. Hybrid itself is currently restricted to second-order
since the representation of many formal systems does not require more. The declarations in
this section are used to generate the set of constants needed for the de Bruijn level, as well as
a set of definitions for encoding syntax at the HOAS level.

The declarations in the second section introduce SL-level predicates. These are the predi-
cates used to encode the judgments in the inference rules defining the semantics of the OL. The
third section defines the OL inference rules, which are translated to prog clauses. Together, the
predicates and clauses instantiate the required parameters of the SL.

We present the specification language and our translation tool informally via an example,
which is described in Section 2. In Section 3, we describe the technical details of some of our
algorithms and their implementation. This work is part of an ongoing larger project to compare
reasoning in a variety of systems that reason using HOAS (see [3], for example). In Section 4,
we discuss the current focus of our work on the translation tool in the context of this larger
project. In Section 5, we conclude and discuss our longer term goals.

2 An Example: The Polymorphic λ-Calculus

As an example, we consider typing for the polymorphic λ-calculus as defined in [10]. The syntax
is defined by the following grammars, and typing is defined by the rules below.

Terms M,N ::= x | λx : T.M | M M | λα.M | M [T]
Types S, T ::= α | T → T | ∀α.T

x : T ∈ Γ
tyv

Γ ` x : T

Γ `M : S → T Γ ` N : S
tya

Γ `MN : T

Γ, x : S `M : T
ty l

Γ ` λx : S.M : S → T

Γ `M : ∀α.T
tyta

Γ `M [S] : [S/α]T

Γ, α `M : T
tytl

Γ ` λα.M : ∀α.T

Figure 1 encodes the syntax and typing rules, and illustrates the use of our specification lan-
guage. In the Syntax section, the keyword type introduces new atomic types for the different
syntax classes, which are the polymorphic types (tp) and terms (tm) in this example. Abstrac-
tion in types and terms (defined by constants all, lam, and tlam) is defined using function
types. Thus in the HOAS representation, abstraction in the OL will be represented using
abstraction in the meta-language, which here is Coq’s λ-abstraction.

The typing judgment for the polymorphic λ-calculus is expressed using the typeof predicate
declared in the Judgments section. Here, the keyword type will map to the type of propositions
of the target system, which for Hybrid is the type of formulas of the SL. Note that we use the

68

Translating Higher-Order Specifications Habli and Felty

Syntax

tp: type.

arr: tp -> tp -> tp. all: (tp -> tp) -> tp.

tm: type.

app: tm -> tm -> tm. lam: (tm -> tm) -> tp -> tm.

tapp: tm -> tp -> tm. tlam: (tp -> tm) -> tm.

Judgments

typeof: tm -> tp -> type.

Rules

ty_a: typeof M (arr S T) -> typeof N S -> typeof (app M N) T.

ty_l: (Pi x. typeof x S -> typeof (M x) T) -> typeof (lam (\x. M x) S) (arr S T).

ty_ta: typeof M (all (\a. T a)) -> typeof (tapp M S) (T S).

ty_tl: (Pi a. typeof (M a) (T a)) -> typeof (tlam (\a. M a)) (all (\a. T a)).

End

Figure 1: A Specification for the Polymorphic λ-Calculus

type keyword in both sections, borrowing from Twelf [11], where predicates and types are at
the same level.

The inference rules appear in the last section, and here again the syntax resembles the syntax
of Twelf to some extent. As in Twelf, the contexts that are explicit in the informal presentation
of the rules are implicit in the judgment section of the specification. The rules are named, and
the arrow is used to separate hypotheses from one another and from the conclusion, which is the
last formula before the terminating dot. Binders in the polymorphic λ-calculus are represented
using the binding operator of our specification language (backslash). We use tokens starting
with uppercase letters for “schematic” variables (used to represent terms and types of the λ-
calculus in this example) and tokens starting with lowercase letters for constructors, predicates,
rule names, and bound variables.

From this fairly small specification, we generate a library that can be directly loaded into
Coq, part of which is shown in Figures 2 and 3. As mentioned earlier, Hybrid is implemented
in both Isabelle and Coq, and both implementations are described in [4]. As we present the
Coq code in this section, we will often refer to results from [4] that are relevant. For the
reader interested in looking up these results, we note that most of the formal definitions and
statements in that paper use a pretty-printed version of code that can be viewed as either
Isabelle or Coq syntax. (See pages 48–49 for a description of this notation.) In the text of [4],
when the implementations diverge, it is explicitly stated. (For example, see Section 2.2.)

The set Econ in Figure 2 is the set of constants that serve as a parameter to the de Bruijn
representation of terms. Note that there is one for each constructor in the Syntax section.
The next 3 lines perform this parameter instantiation and are the same for any Hybrid OL
library. The last 6 lines of the Constants section fill in the Hybrid definitions for the HOAS
representation of the 6 constructors. They are defined in terms of their underlying de Bruijn
representation. The constant lambda is a binding operator defined on top of the de Bruijn
representation, and its definition is part of the infrastructure hidden from the user. Types
of bound variables in Coq are not explicitly added since they can be inferred. In these Coq
definitions, there is no distinction between the types tp and tm found in the specification. All
terms have Coq type uexp (the type of de Bruijn terms parameterized by the set ECon) and all

69

Translating Higher-Order Specifications Habli and Felty

Require Import sl.

Section encoding.

(**

Constants

***)

Inductive ECon: Set := Carr: ECon | Call: ECon | Capp: ECon |

Clam: ECon | Ctapp: ECon | Ctlam: ECon.

Definition uexp: Set := expr ECon.

Definition Var: var -> uexp := (VAR ECon).

Definition Bnd: bnd -> uexp := (BND ECon).

Definition arr:= fun T1 => fun T2 => (APP (APP (CON Carr) T1) T2).

Definition all:= fun T1 => (APP (CON Call) (lambda T1)).

Definition app:= fun T1 => fun T2 => (APP (APP (CON Capp) T1) T2).

Definition lam:= fun T1 => fun T2 => (APP (APP (CON Clam) (lambda T1)) T2).

Definition tapp:= fun T1 => fun T2 => (APP (APP (CON Ctapp) T1) T2).

Definition tlam:= fun T1 => (APP (CON Ctlam) (lambda T1)).

(**

The atm type and instantiation of oo.

***)

Inductive atm : Set :=

| is_tp : uexp -> atm

| is_tm : uexp -> atm

| typeof : uexp -> uexp -> atm.

Definition oo_ := oo atm ECon.

...

Figure 2: A Hybrid Library for Reasoning about the Polymorphic λ-Calculus Part 1

arguments to lambda have type (uexp -> uexp).
Note that not all Coq functions of type (uexp -> uexp) encode object-level λ-terms. Those

that do not are often called exotic terms. Only functions that behave uniformly or parametri-
cally on their arguments represent λ-terms. Hybrid includes a predicate abstr that rules out
exotic terms and identifies exactly those terms that represent OL terms. (See Section 2, pages
52–54 in [4] for a definition of abstr as well as other definitions it depends on.) This predicate
appears in the Coq code obtained from translating the OL inference rules to prog clauses. (See
Figure 3.)

The types atm and oo are the Hybrid types of atomic and general formulas, respectively,
of the SL. A sequent calculus for the SL is implemented in Hybrid as an inductive predicate
defining the type oo . In [4], two sample SLs are given, one for a fragment of second-order
intuitionistic logic, and another for an ordered linear logic. The former is used in the work
described here. (See Figure 5 on page 68 of [4].) The sequent calculus is analogous to a logic
programming interpreter, where the prog clauses can be viewed as a second-order logic program.
We note that contexts in the SL are explicitly represented in the inductive definition, while they
are implicit in the prog clauses. For readers familiar with Twelf, the prog clauses correspond
to a Twelf program, while the SL corresponds to Twelf’s meta-level, where OL contexts are
represented as meta-level contexts. In Hybrid, both levels are formalized, and thus contexts are
explicitly represented and reasoned about at the SL level.

70

Translating Higher-Order Specifications Habli and Felty

(***

Definition of prog

***)

Inductive prog : atm -> oo_ -> Prop :=

| tp_arr: forall T1, forall T2,

prog (is_tp (arr T1 T2)) (Conj (atom_ (is_tp T1)) (atom_ (is_tp T2)))

| tm_lam: forall T1, abstr T1 -> forall T2,

prog (is_tm (lam T1 T2))

(Conj (All (fun x1 => (Imp (is_tm x1) (atom_ (is_tm (T1 x1))))))

(atom_ (is_tp T2)))

...

| ty_a : forall M, forall S, forall T, forall N,

prog (typeof (app M N) T) (Conj (atom_ (typeof M (arr S T))) (atom_ (typeof N S)))

| ty_l : forall S, forall M, abstr M -> forall T,

prog (typeof (lam (fun x=> (M x)) S) (arr S T))

(All (fun x => (Imp (typeof x S) (atom_ (typeof (M x) T)))))

| ty_ta : forall M, forall T, abstr T -> forall S,

prog (typeof (tapp M S) (T S)) (atom_ (typeof M (all (fun a => (T a)))))

| ty_tl : forall M, abstr M -> forall T, abstr T ->

prog (typeof (tlam (fun a => (M a))) (all (fun a => (T a))))

(All (fun a => (atom_ (typeof (M a) (T a))))).

Hint Resolve tp_arr tp_all tm_app tm_lam tm_tapp tm_tlam ty_a ty_l

ty_ta ty_tl : hybrid.

Figure 3: A Hybrid Library for Reasoning about the Polymorphic λ-Calculus Part 2

Figure 2 defines atm as an inductive set of predicates. Continuing the logic programming
analogy, these can be viewed as predicates of a logic program. The binary predicate typeof

comes directly from the specification. Again, the types of the arguments of this predicate (tm
and tp) in the specification are mapped to uexp in the Coq library. As a result, we need to
introduce a predicate corresponding to each type in the specification to be used to identify well-
formed types and terms of the polymorphic λ-calculus. Here, the is tp and is tm predicates are
introduced for this purpose. The last definition in the figure instantiates the oo type, which
must be done after the atm parameter is defined. The elided part includes other definitions
involved in instantiating this type, as well as hints to Coq to help with automating proofs.

Figure 3 defines the prog clauses (or logic program) which serve as the final parameter
to the SL. The last 4 clauses are direct translations of the rules in the specification. The
prog predicate takes two arguments: the conclusion of an inference rule (the head of a logic
programming clause) followed by the premise or premises (the body of the logic programming
clause). The constructors Conj, Imp, and All are the connectives of the SL, and atom coerces
atm to oo . Pi in the specification language maps to All, embedded implication maps to
Imp, and multiple hypotheses are separated by Conj. Note that schematic variables in the
specification are implicitly quantified at the outermost level. Explicit quantifiers (forall in
Coq) are added to each clause of the definition of prog as part of the translation.

The other clauses, including the elided ones, are the rules for determining well-formed terms
and well-formed types. These are automatically generated from the type declarations in the
Syntax section, and represent the most complex part of the translation implemented so far.

In Hybrid, as in other logical frameworks such as Twelf, we must be sure that the syntax and
inference rules are adequately encoded in the meta-language. Proving adequacy involves proving

71

Translating Higher-Order Specifications Habli and Felty

that there is a one-to-one correspondence between the syntax of the OL and its representation
in the meta-language, and that an OL judgment has a proof using the inference rules if and only
if the encoded version of the judgment is provable in the logical framework. For an example
of how adequacy is proved in Hybrid, see Section 3.2 of [4]. The rules for well-formed terms
of the OL are an important component of adequacy proofs in Hybrid. In our example OL, for
instance, we must prove that whenever there is a proof in Hybrid that a term of the polymorphic
λ-calculus has a particular type, then both the term and the type are well-formed (as defined
by the clauses for is tp and is tm).

3 Implementation of the Translation Tool

In this section, we describe the overall structure of the implementation of the translation,
which as mentioned, is in OCaml. We have not given a formal definition of the syntax of the
specification language, so this description is informal. Using mllex and mlyacc, the 3 sections
of a specification are each parsed to a list of type (string * exp) list. In each pair in the
list, the first argument is the constructor, predicate, or rule name, and the second argument is
an element of the following type:

type exp = Type | Id of string | Arrow of exp * exp | App of string * exp list |

Lambda of string * exp * exp | Pi of string * exp * exp

There is a direct mapping of each operator in the specification to a constructor of exp. For
example, the combination of \ and the dot separating the bound variable from the term maps
to Lambda. The type keyword maps to Type, and all other identifiers to Id. We unify the
syntax of all three sections of the specification, even though the first two do not use Lambda

and Pi. The translation function has the following overall structure, divided here into 4 steps,
with details of step 3(e) filled in a bit further in Figure 4.

1. Parse the input file into three lists of declarations: ds1, ds2, and ds3 where each one is
the parsed input of Syntax, Judgments, and Rules, respectively.

2. Call functions to isolate the following variables:

(a) Typelist: from ds1, obtain the list of identifiers (strings) from declarations of the
form “id:type.” in the specification.

(b) Syntax listName aux: from ds1 and Typelist, obtain a list of lists of the remain-
ing identifiers (OL syntax constructor names); use Typelist to group them into
sublists according to the target types of the constructors (the types just before the
terminating dots).

(c) Syntax listExpr aux: from ds1 and Typelist, form the list of lists of types of
the constructors (expressed as elements of type exp), using the same groupings into
sublists as above in (b).

(d) Rules listName: from ds3, get the list of the identifiers corresponding to rule names.

3. Call functions to create the following strings using the variables from step 2.

(a) string1: from Syntax listName aux construct the string for the inductive def-
inition of ECon, with one case of the Coq definition for each constructor in
Syntax listName aux with names prepended by C. (See ECon in Figure 2.)

72

Translating Higher-Order Specifications Habli and Felty

(b) string2: from Syntax listName aux and Syntax listExpr aux, construct a string
with one line for each constructor, containing a Coq definition for the encoding of
syntax for that constructor. Two cases must be considered, depending on whether
the constructor’s type is first- or second-order. If there is a functional argument, the
lambda operator is used. (See the 6 definitions at the end of the Constants section
of Figure 2.)

(c) string3: from Typelist construct a string for the inductive definition of atm con-
taining all the clauses for the well-formedness predicates (those of type uexp -> atm,
see Figure 2).

(d) string4: from ds2 construct a string containing clauses of the inductive definition
of atm, one for each predicate in the Judgments section. Judgments cannot have
function arguments; their types are first-order. We simply count the number of
argument types and write “uexp ->” for each one, ending the clause with atm. (See
the last clause of the definition of atm in Figure 2.)

(e) string5: from Syntax listName aux and Syntax listExpr aux, construct a string
containing all the prog clauses for well-formedness of OL terms. See Figure 4 for
some details of the implementation. (See also Figure 3, which contains 2 of 6 such
clauses, with the rest elided.)

(f) string6: from ds3 construct a string containing one prog clause corresponding to
each rule in the Rules section. We omit the details. (See the last 4 prog clauses in
Figure 3.)

(g) string7: From Syntax listName aux and Rules listName it is straightforward to
construct the Hint string. (See the last line of Figure 3.)

4. Write the following strings to the output file in the appropriate order: strings representing
Coq comments, fixed strings (library elements that are the same for all specifications),
and the strings obtained from step 3.

4 Extensions

In this section, we discuss the extensions of our tool that we are currently working on, as well
as some other near-term goals.

There are a variety of standard lemmas that are useful for reasoning about OLs that can
be directly generated from the specification. The next step in our current work is to add
capabilities to our tool to automatically generate the statements of these lemmas from the
specification. In addition, their proofs are mostly easily automated. Part of our work involves
improving Hybrid to include better tactics for automating such proofs. In addition, we envision
augmenting the translation to automatically insert parts of a proof script into the Coq libraries.
Our current work involves studying the most effective way to combine these two techniques for
automating proofs. This approach is used in a variety of other tools such as Krakatoa [6],
which automatically generates Coq libraries for Hoare-style reasoning about correctness of Java
programs, and uses tactics designed specifically for automating proofs in this domain.

We also have done some preliminary work on extending the specification language to include
a declaration section for contexts, used to represent a set of hypotheses. Many theorems require
reasoning about contexts, and our previous work on comparing systems [3] focused particularly
on this aspect.

Examples of the kinds of “standard lemmas” that we would like to generate and prove
partially or fully automatically include lemmas for adequacy and lemmas for dealing with

73

Translating Higher-Order Specifications Habli and Felty

Loop 1 (outermost): For each type name tname in Typelist, each corresponding list of
constructors cnames in Syntax listName aux and list of expressions representing types
ctypes in Syntax listExpr aux, execute Loop 2. Using the first 3 declarations in Fig-
ure 1 as an example, the following data is used the first time through Loop 2:

tname = "tp" cnames = ["arr";"all"]

ctypes = [Arrow (Id "tp", Arrow (Id "tp", Id "tp"));

Arrow (Arrow (Id "tp", Id "tp"), Id "tp")]

Loop 2 1. From tname and cnames, build a list rnames of rule names for prog clauses. (In
the example, the result is ["tp_arr";"tp_all"].)

2. For each element rname of rnames and the corresponding element ctype of ctypes,
execute Loop 3.

Loop 3 1. Count the number of arguments in ctype by finding the number of external
arrows (all those except arrows in function types of arguments). Create a list args

of pairs containing variables T1, T2, . . . , Tn, one for each argument and arity of the
argument (0 for non-functional arguments). For the first elements of ctypes, we get
[("T1",0);("T2",0)] and for the second element, we get [("T1",1)].

2. Using rname, ctype, and the corresponding element of args, build a string by con-
catenating the following substrings:

• "| " ^ rname ^ ":"
• For each ("Ti",m) in args, add "forall Ti,". If m > 0, add "abstr Ti ->".
• "prog (is_" ^ tname ^ "(" ^ cname
• For each pair in args write the first element followed by a space. At the end,

add "))".
• Create a string of the form (Conj s1 (Conj s2 . . . (Conj sn−1 sn)· · ·)) where
n is the number of elements of args. If n = 1, the string is just s1 with no Conj.

• If the ith element of args is ("Ti",0), si is "(atom_ (is_" ^ t ^ " Ti))"

where t is the corresponding identifier in ctype (always "tp" in this example).
• If the ith element of args is ("Ti",m) where m > 0, then cre-

ate variables x1, . . . , xm. Form si as follows: for each xj, add
the substring "(All (fun xj => (Imp (is_" ^ tj ^ "xj)"; end si with
"(atom_ (is_" ^ t ^ " (Ti x1. . .xm). . .))" where tj and t are the appro-
priate types in ctype.

For our example, from tname, the first elements of cnames and ctypes, and the
first list args above, the output string we obtain is the first clause of the inductive
definition of prog in Figure 3.

Figure 4: Building string5 from Step 3(e).

explicit contexts, as well as a variety of others. For example, the adequacy lemma mentioned
in Section 2 can be automatically generated. Many proofs in Hybrid proceed by induction
over the SL with inversion over both the definitions of the SL and the prog clauses of the OL.
In addition to the inversion lemmas automatically generated from a Coq inductive definition,
we state and prove specialized inversion lemmas that can greatly simplify Hybrid proofs. The
first lemma in Figure 5 is an example of such a lemma, one whose statement and proof can
be automatically generated. Note that seq is Hybrid’s predicate for SL sequents. It takes 3
arguments: the height of a proof, a context of assumptions, and the formula to be proved. The
proper predicate appearing in the lemma is important for adequacy (see [4]).

Context weakening is a general lemma that follows from the definition of the SL, and it

74

Translating Higher-Order Specifications Habli and Felty

Lemma ty_l_inv : forall (i:nat) (Psi:list atm) (M:uexp->uexp) (T1 T2:uexp),

(forall x : uexp, proper x ->

seq_ i Psi (Imp (typeof x T1) (atom_ (typeof (M x) T2)))) ->

exists j:nat, (i=j+1 /\

forall x : uexp, proper x ->

seq_ j (typeof x T1::Psi) (atom_ (typeof (M x) T2))).

Lemma simple_strengthen : forall (i:nat) (T x y:uexp) (Gamma:list atm),

seq_ i (is_tm x::is_tp y::Gamma) (atom_ (is_tp T)) ->

seq_ i (is_tp y::Gamma) (atom_ (is_tp T)).

Figure 5: Example OL Lemmas

is stated and proved in the SL library. Context “strengthening” on the other hand, where
assumptions that are irrelevant to the proof of a particular judgment are removed, depends on
the OL. A simple example of a strengthening lemma is given in Figure 5. For several examples
that occur in the context of a case study, see [3] (e.g., the occurrence of strengthening in
the proof of Theorem 2). Part of our extension to the specification language will include the
capability to specify at a high level what kinds of strengthening lemmas are desired, and then
automatically generate and prove or partially prove them as part of the translation.

Our specifications can be translated to libraries for other systems supporting reasoning with
HOAS, although we have not yet done so. Much of the work done here, however, can be di-
rectly reused, including, of course, the parsing of a specification to its internal representation
in OCaml, as well as much of the overall structure of the OCaml functions we have defined to
perform the translation. The systems we are currently targeting are Abella [5], Twelf [11], and
Beluga [9]. A common characteristic of all of these systems is multi-level reasoning. A straight-
forward modification of the translation is all that should be required to obtain a basic input
library for each of these systems. We mentioned earlier that our specification language adopts
several features of Twelf directly. In fact, translation to Twelf will be the most straightforward
to implement. Adding more significant support for each of these systems, such as including
specialized lemmas, will require further effort.

5 Conclusion and Future Work

We have described our translation tool, which provides support for reasoning in Hybrid about
object languages expressed using HOAS. We presented the specification language, described the
translation to a Hybrid library, and discussed the implementation as well as several extensions
planned for the near term.

In the longer term, we would also like to examine translations to more systems, in order
to facilitate a more fuller comparison of reasoning in systems supporting HOAS. Such work
may require extending the specification language. The work presented here can be considered
as a variant of the Ott project [12] tailored specifically to the needs of HOAS. Ott contains
constructs for specifying binders, and one of our longer term goals is to integrate our tool with
Ott. In the present work, we chose to start with a smaller simpler language targeted to the
needs of Hybrid, Abella, Twelf, and Beluga. Another approach is to consider using the higher-
order logic programming language λProlog [7] as both the specification language as well as the
implementation language for the translation.

75

Translating Higher-Order Specifications Habli and Felty

Finally, we mentioned in Section 1 that both Hybrid and the specification language restrict
the definition of syntax of OLs to second-order types. Another long-term goal is to general-
ize Hybrid to higher-order, which will then require extending our specification language and
translation.

References

[1] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

[2] Venanzio Capretta and Amy P. Felty. Combining de Bruijn indices and higher-order abstract
syntax in Coq. In TYPES, pages 63–77, 2006.

[3] Amy Felty and Brigitte Pientka. Reasoning with higher-order abstract syntax and contexts: A
comparison. In International Conference on Interactive Theorem Proving, volume 6172 of Lecture
Notes in Computer Science, pages 227–242. Springer, 2010.

[4] Amy P. Felty and Alberto Momigliano. Hybrid: A definitional two-level approach to reasoning
with higher-order abstract syntax. Journal of Automated Reasoning, 48(1):43–105, 2012.

[5] Andrew Gacek. The Abella interactive theorem prover (system description). In 4th International
Joint Conference on Automated Reasoning, volume 5195 of Lecture Notes in Computer Science,
pages 154–161. Springer, 2008.

[6] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The Krakatoa Tool for Certification
of Java/JavaCard Programs annotated in JML. Journal of Logic and Algebraic Programming,
58(1–2):86–106, 2004.

[7] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge University
Press, 2012.

[8] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer Verlag, 2002.

[9] Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming and reasoning
with deductive systems (system description). In 5th International Joint Conference on Automated
Reasoning, volume 6173 of Lecture Notes in Computer Science, pages 15–21. Springer, 2010.

[10] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[11] Carsten Schürmann. The Twelf proof assistant. In 22nd International Conference on Theorem
Proving in Higher Order Logics (TPHOLs), volume 5674 of Lecture Notes in Computer Science,
pages 79–83. Springer, 2009.

[12] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strnĭsa. Ott: Effective tool suppor for the working semanticist. Journal of
Functional Programming, 20(1):71–122, 2010.

76

	Introduction
	An Example: The Polymorphic -Calculus
	Implementation of the Translation Tool
	Extensions
	Conclusion and Future Work

