
EPiC Series in Computing

Volume 80, 2021, Pages 90–119

8th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems (ARCH21)

ARCH-COMP21 Category Report:

Artificial Intelligence and Neural Network Control Systems

(AINNCS) for Continuous and Hybrid Systems Plants

Taylor T. Johnson1, Diego Manzanas Lopez1 Luis Benet2, Marcelo Forets3,
Sebastián Guadalupe3, Christian Schilling4,5, Radoslav Ivanov6, Taylor

Carpenter6, James Weimer6, Insup Lee6

1 Vanderbilt University
Nashville, TN

{taylor.johnson, diego.manzanas.lopez }@vanderbilt.edu
2 Instituto de Ciencias F́ısicas, Universidad Nacional Autónoma de México (UNAM), México

benet@icf.unam.mx
3 Universidad de la República, Montevideo, Uruguay

mforets@gmail.com, sebastianguadalupe00@gmail.com
4 University of Konstanz

Konstanz, Germany
5 Aalborg University

Aalborg, Denmark
christianms@cs.aau.dk

6 University of Pennsylvania
Philadelphia, PA

{rivanov, carptj, weimerj, lee}@seas.upenn.edu

Abstract

This report presents the results of a friendly competition for formal verification of
continuous and hybrid systems with artificial intelligence (AI) components. Specifically,
machine learning (ML) components in cyber-physical systems (CPS), such as feedforward
neural networks used as feedback controllers in closed-loop systems are considered, which
is a class of systems classically known as intelligent control systems, or in more modern
and specific terms, neural network control systems (NNCS). We more broadly refer to
this category as AI and NNCS (AINNCS). The friendly competition took place as part of
the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2021.
In the third edition of this AINNCS category at ARCH-COMP, three tools have been
applied to solve seven different benchmark problems, (in alphabetical order): JuliaReach,
NNV, and Verisig. JuliaReach is a new participant in this category, Verisig participated
previously in 2019 and NNV has participated in all previous competitions. This report is
a snapshot of the current landscape of tools and the types of benchmarks for which these
tools are suited. Due to the diversity of problems, lack of a shared hardware platform,
and the early stage of the competition, we are not ranking tools in terms of performance,
yet the presented results combined with 2020 results probably provide the most complete
assessment of current tools for safety verification of NNCS.

G. Frehse and M. Althoff (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 90–119

ARCH-COMP21 AINNCS Johnson et al

1 Introduction

Neural Networks (NNs) have demonstrated an impressive ability for solving complex problems
in numerous application domains [44]. The success of these models in contexts such as adaptive
control, non-linear system identification [31], image and pattern recognition, function approxi-
mation, and machine translation, has stimulated the creation of technologies that are directly
impacting our everyday lives [37], and has led researchers to believe that these models possess
the power to revolutionize a diverse set of arenas [35].

Despite these achievements, there have been reservations in utilizing them within high-
assurance systems for a variety of reasons, such as their susceptibility to unexpected and errant
behavior caused by slight perturbations in their inputs [27]. In a study by Szegedy et al. [38],
the authors demonstrated that by carefully applying a hardly perceptible modification to an
input image, one could cause a successfully trained neural network to produce an incorrect
classification. These inputs are known as adversarial examples, and their discovery has caused
concern over the safety, reliability, and security of neural network applications [44]. As a result,
there has been a large research effort directed towards obtaining an explicit understanding of
neural network behavior.

Neural networks are often viewed as “black boxes,” whose underlying operation is often
incomprehensible, but the last several years have witnessed numerous promising white-box
verification methods proposed towards reasoning about the correctness of their behavior. How-
ever, it has been demonstrated that neural network verification is an NP-complete problem [26],
and while current state-of-the-art verification methods have been able to deal with small net-
works, they are incapable of dealing with the complexity and scale of networks used in practice
([29, 17, 5]). Additionally, while in recent years there has been a large amount of work focused
on verifying pre-/post-conditions for neural networks in isolation, reasoning about the behavior
of their usage in cyber-physical systems, such as in neural network control systems, remains a
key challenge.

The following report aims to provide a survey of the landscape of the current capabilities
of verification tools for closed-loop systems with neural network controllers, as these systems
have displayed great utility as a means for learning control laws through techniques such as
reinforcement learning and data-driven predictive control [15, 40]. Furthermore, this report
aims to provide readers with a perspective of the intellectual progression of this rapidly growing
field and stimulate the development of efficient and effective methods capable of use in real-life
applications.

Disclaimer The presented report of the ARCH-COMP friendly competition for closed-
loop systems with neural network controllers, termed in short AINNCS (Artificial Intelli-
gence / Neural Network Control Systems), aims to provide the landscape of the current
capabilities of verification tools for analyzing these systems that are classically known as
intelligent control systems. This AINNCS ARCH-COMP category is complementary to
the ongoing Verification of Neural Networks Competition (VNN-COMP) [8], the latter of
which focuses on open-loop specifications of neural networks, while the AINNCS category
focuses on closed-loop behaviors of dynamical systems incorporating neural networks. We
would like to stress that each tool has unique strengths—not all of the specificities can be

91

ARCH-COMP21 AINNCS Johnson et al

highlighted within a single report. To reach a consensus in what benchmarks are used,
some compromises had to be made so that some tools may benefit more from the presented
choice than others. To establish further trustworthiness of the results, the code with which
the results have been obtained is publicly available at gitlab.com/goranf/ARCH-COMP.

Specifically, this report summarizes results obtained in the 2021 friendly competition of the
ARCH workshop1 for verifying systems of the form

ẋ(t) = f(x(t), u(x, t)),

where x(t) and u(x, t) correspond to the states and inputs of the plant at time t, respectively,
and where u(x, t) is the output of a feedforward neural network provided an input of the plant
state x at time t. This year is the third iteration of the AINNCS category at ARCH-COMP
and builds on the previous iterations and reports from 2019 and 2020 [30, 24]. Participating
tools are summarized in Sec. 2. Please, see [44] for further details on these and additional
tools. The results of our selected benchmark problems are shown in Sec. 3 and are obtained
on the tool developers’ own machines. Thus, one has to factor in the computational power of
the processors used, summarized in Appendix A, as well as the efficiency of the programming
language of the tools. The architecture of the closed-loop systems we will evaluate is depicted
in Figure 1, where the input to the NN controller is additionally sampled.

Figure 1: Closed-loop architecture of the benchmarks to be verified.

The goal of the friendly competition is not to rank the results, but rather to present the
landscape of existing solutions in a breadth that is not possible with scientific publications in
classical venues. Such publications would typically require the presentation of novel techniques,
while this report showcases the current state-of-the-art tools. The selection of the benchmarks
has been conducted within the forum of the ARCH website (cps-vo.org/group/ARCH), which
is visible for registered users and registration is open for anyone.

Since 2019, we have seen significant progress on the verification algorithms, tools developed
and benchmarks verified. Seven different tools have participated in the past three years while
adding and improving the different reachability methods such as Verisig [20, 21] and NNV [42].

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH

92

https://gitlab.com/goranf/ARCH-COMP
http://cps-vo.org/group/ARCH
http://cps-vo.org/group/ARCH

ARCH-COMP21 AINNCS Johnson et al

2 Participating Tools

We present a brief overview of all the participating tools in this friendly competition. The tools
are JuliaReach, NNV, and Verisig. The tools participating in this AINNCS category Artificial
Intelligence / Neural Network Control Systems in Continuous and Hybrid Systems Plants are
introduced subsequently in alphabetical order.

JuliaReach (Luis Benet, Marcelo Forets, Sebastián Guadalupe, Christian Schilling) Ju-
liaReach [13] is an open-source software suite for reachability computations of dynamical sys-
tems, written in the Julia language and available at http://github.com/JuliaReach. The
brand-new package for reachability analysis of neural-network controlled systems is Neural-
NetworkAnalysis.jl. This package handles the closed-loop analysis and queries sub-problems
to other libraries, namely to ReachabilityAnalysis.jl for continuous-time analysis of the plant
models and NeuralVerification.jl [28] for the neural-network analysis. Additional set computa-
tions are performed with LazySets.jl [18]. JuliaReach can also run parallel simulations, where
numerical integration of differential equations is handled by DifferentialEquations.jl [34].

For the plant analysis we use the sound algorithm TMJets based on interval arithmetic
and Taylor models, which is implemented in Taylor models [9, 12], which itself integrates Tay-
lorSeries.jl [10, 11] and TaylorIntegration.jl [32]. The algorithm is a form of jet transportation
using a Taylor polynomial with interval coefficients and uses the following main parameters
for tweaking: the absolute tolerance abstol and two parameters to define the order at which
the Taylor expansion is cut in time (orderT) resp. in space (orderQ). For the neural-network
analysis we use an abstract interpretation based on zonotopes [36]. Due to careful conver-
sions, JuliaReach can preserve high precision even after many control periods. Still, sometimes
JuliaReach partitions the initial states to increase precision. Splitting into independent sub-
problems enables parallelization, but in this category JuliaReach executes sequentially. For
falsification, JuliaReach chooses an initial point but still uses set-based analysis since, although
most benchmark models are deterministic, non-validated simulations may yield wrong results.

NNV NNV (Neural Network Verification Tool) [42, 39, 41, 47, 49, 46, 45, 43, 48, 1] is a Mat-
lab toolbox that implements reachability analysis methods for neural network verification, with
a particular focus on applications of closed-loop neural network control systems in autonomous
cyber-physical systems. NNV uses a star-set state-space representation and reachability algo-
rithm that allows for a layer-by-layer computation of exact or overapproximate reachable sets for
feed-forward and convolutional neural networks. The star-set based algorithm is naturally par-
allelizeable, which allowed NNV to be designed to perform efficiently on multi-core platforms.
Additionally, in the event that a particular safety property is violated, NNV can be used to con-
struct and visualize the complete set of counterexample inputs for a neural network. Using NNV
in combination with HyST [7, 6] and CORA[2, 3, 4] allows for the verification of closed-loop
neural network control systems with nonlinear plant dynamics. The tool along with all of the
relevant experiments and publications can be found at https://github.com/verivital/nnv.

Verisig Verisig [21, 19, 22, 20] is a tool for verifying safety properties of closed-loop hybrid
systems with deep neural network (DNN) components. Verisig supports sigmoid and tanh-based
networks and exploits the fact that the sigmoid (and the tanh) is the solution to a quadratic
differential equation, which allows us to transform the neural network into an equivalent hybrid
system. By composing the network’s hybrid system with the plant’s, Verisig transforms the
problem into a hybrid system verification problem which can be solved using state-of-the-art

93

http://github.com/JuliaReach
https://github.com/JuliaReach/NeuralNetworkAnalysis.jl
https://github.com/JuliaReach/NeuralNetworkAnalysis.jl
https://github.com/JuliaReach/ReachabilityAnalysis.jl
https://github.com/sisl/NeuralVerification.jl
https://github.com/JuliaReach/LazySets.jl
https://github.com/SciML/DifferentialEquations.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/PerezHz/TaylorIntegration.jl
https://github.com/verivital/nnv

ARCH-COMP21 AINNCS Johnson et al

reachability tools. We have performed a number of extensions to improve the scalability and
accuracy of approach, including Taylor model preconditioning and shrink wrapping, as well as a
parallelizable implementation in C++. Verisig is implemented in conjunction with Flow* [14],
in order to allow for a smooth transition between the NN and the hybrid system. Verisig is
available at https://github.com/verisig.

3 Benchmarks

For the competition, we have selected seven benchmarks. A few of them, such as the TORA
benchmark, are presented with several different controllers that can be analyzed. The selected
benchmarks are the same as last year’s competition. We now describe these benchmarks in no
particular order and we have made them readily available online.2

3.1 Adaptive Cruise Controller (ACC)

The Adaptive Cruise Control (ACC) benchmark is a system that tracks a set velocity and
maintains a safe distance from a lead vehicle by adjusting the longitudinal acceleration of an
ego vehicle. The neural network computes optimal control actions while satisfying safe distance,
velocity, and acceleration constraints using model predictive control (MPC) [33]. For this case
study, the ego car is set to travel at a set speed Vset = 30 and maintains a safe distance Dsafe

from the lead car. The car’s dynamics are described as follows:

ẋlead(t) = vlead(t), v̇lead(t) = γlead(t), γ̇lead(t) = −2γlead(t) + 2alead − uv2lead(t),

ẋego(t) = vego(t), v̇ego(t) = γego(t), γ̇ego(t) = −2γego(t) + 2aego − uv2ego(t),
(1)

where xi is the position, vi is the velocity, γi is the acceleration of the car, ai is the acceleration
control input applied to the car, and u = 0.0001 is the friction control where i ∈ {ego, lead}.
For this benchmark we have developed four neural network controllers with 3, 5, 7, and 10
hidden layers of 20 neurons each, although we only evaluate the one with 5 layers. All of them
have the same number of inputs (vset, Tgap, vego, Drel, vrel), and one output (aego).

Specifications The verification objective of this system is that given a scenario where both
cars are driving safely, the lead car suddenly slows down with alead = -2. We want to check
whether there is a collision in the following 5 seconds. Formally, this safety specification of
the system can be expressed as Drel = xlead - xego ≥ Dsafe, where Dsafe = Ddefault + Tgap ×
vego, and Tgap = 1.4 seconds and Ddefault = 10. The initial conditions are: xlead(0) ∈ [90,110],
vlead(0) ∈ [32,32.2], γlead(0) = γego(0) = 0, vego(0) ∈ [30, 30.2], xego ∈ [10,11]. A control period
of 0.1 seconds is used.

3.2 Sherlock-Benchmark-9 (TORA)

This benchmark is that of a TORA (translational oscillations by a rotational actuator) [15, 23].
The model is that of a cart attached to a wall with a spring, and is free to move on a friction-less
surface. The cart itself has a weight attached to an arm inside it, which is free to rotate about
an axis. This serves as the control input, in order to stabilize the cart at x = 0. The model is
a 4 dimensional system, given by the following equations :

ẋ1 = x2, ẋ2 = −x1 + 0.1 sin(x3), ẋ3 = x4, ẋ4 = u. (2)

2https://github.com/verivital/ARCH-COMP2021

94

https://github.com/verisig
https://github.com/verivital/ARCH-COMP2021

ARCH-COMP21 AINNCS Johnson et al

A neural network controller was trained for this system, using data-driven model predictive
controller proposed in [16]. The trained network had 3 hidden layers, with 100 neurons in each
layer making a total of 300 neurons. Note that the output of the neural network f(x) needs to
be normalized in order to obtain u, namely u = f(x)−10. The sampling time for this controller
was 1s.

Specification The verification problem here is that of safety. For an initial set of x1 ∈
[0.6, 0.7], x2 ∈ [−0.7,−0.6], x3 ∈ [−0.4,−0.3], and x4 ∈ [0.5, 0.6], the system states stay within
the box x ∈ [−2, 2]4, for a time window of 20s.

3.3 Sherlock-Benchmark-10 (Unicycle Car Model)

This benchmark is that of a unicycle model of a car [15]. It models the dynamics of a car
involving 4 variables, specifically the x and y coordinates on a 2 dimensional plane, as well as
velocity magnitude (speed) and steering angle.

ẋ1 = x4 cos(x3), ẋ2 = x4 sin(x3), ẋ3 = u2, ẋ4 = u1 + w, (3)

where w is a bounded error in the range [−1e − 4, 1e − 4]. A neural network controller was
trained for this system, using a model predictive controller as a “demonstrator” or “teacher”.
The trained network has 1 hidden layer, with 500 neurons. Note that the output of the neural
network f(x) needs to be normalized in order to obtain (u1, u2), namely ui = f(x)i − 20. The
sampling time for this controller was 0.2s.

Specification The verification problem here is that of reachability. For an initial set of x1 ∈
[9.5, 9.55], x2 ∈ [−4.5,−4.45], x3 ∈ [2.1, 2.11], and x4 ∈ [1.5, 1.51], it is required to prove that
the system reaches the set x1 ∈ [−0.6, 0.6], x2 ∈ [−0.2, 0.2], x3 ∈ [−0.06, 0.06], x4 ∈ [−0.3, 0.3]
within a time window of 10s.

3.4 VCAS Benchmark

This benchmark is a closed-loop variant of aircraft collision avoidance system ACAS X. The
scenario involves two aircraft, the ownship and the intruder, where the ownship is equipped
with a collision avoidance system referred to as VerticalCAS [25]. Once every second, Vertical-
CAS issues vertical climb rate advisories to the ownship pilot to avoid a near mid-air collision
(NMAC). Near mid-air collisions are regions in which the ownship and the intruder are sep-
arated by less than 100ft vertically and 500ft horizontally. The ownship (black) is assumed
to have a constant horizontal speed, and the intruder (red) is assumed to follow a constant
horizontal trajectory towards ownship, see Figure 2. The current geometry of the system is
described by

• h, intruder altitude relative to ownship,

• ḣ0, ownship vertical climb rate, and

• τ , the seconds until the ownship (black) and intruder (red) are no longer horizontally
separated.

We can, therefore, assume that the intruder is static and the horizontal separation τ de-
creases by one each second.

95

ARCH-COMP21 AINNCS Johnson et al

NMAC zone

�

�

h

τ

|ḣ0|

Figure 2: VerticalCAS encounter geometry

There are 9 advisories and each of them instructs the pilot to accelerate until the vertical
climb rate of the ownship complies with the advisory: (1) COC: Clear Of Conflict; (2) DNC: Do
Not Climb; (3) DND: Do Not Descend; (4) DES1500: Descend at least 1500 ft/s; (5) CL1500:
Climb at least 1500 ft/s; (6) SDES1500: Strengthen Descent to at least 1500 ft/s; (7) SCL1500:
Strengthen Climb to at least 1500 ft/s; (8) SDES2500: Strengthen Descent to at least 2500
ft/s; (9) SCL2500: Strengthen Climb to at least 2500 ft/s.

In addition to the parameters describing the geometry of the encounter, the current state of
the system stores the advisory adv issued to the ownship at the previous time step. VerticalCAS
is implemented as nine ReLU networks Ni, one for each (previous) advisory, with three inputs
(h, ḣ0, τ), five fully-connected hidden layers of 20 units each, and nine outputs representing the
score of each possible advisory. Therefore, given a current state (h, ḣ0, τ, adv), the new advisory
adv′ is obtained by computing the argmax of the output of Nadv on (h, ḣ0, τ).

Given the new advisory, the pilot can choose acceleration ḧ0 as follows. If the new advisory
is COC (1), then it can be any acceleration from the set {− g

8 , 0,
g
8}. For all remaining advisories,

if the previous advisory coincides with the new one and the current climb rate complies with
the new advisory (e.g., ḣ0 is non-positive for DNC and ḣ0 ≥ 1500 for CL1500) the acceleration
ḧ0 is 0; otherwise, the pilot can choose any acceleration ḧ0 from the given sets: (2) DNC:
{− g

3 ,−
7g
24 ,−

g
4}; (3) DND: { g4 ,

7g
24 ,

g
3}; (4) DES1500: {− g

3 ,−
7g
24 ,−

g
4}; (5) CL1500: { g4 ,

7g
24 ,

g
3};

(6) SDES1500: {− g
3}; (7) SCL1500: { g3}; (8) SDES2500: {− g

3}; (9) SCL2500: { g3}, where g

represents the gravitational constant 32.2 ft/s
2
.

It was proposed to tweak the benchmark for the tools that cannot account for all possible
choices of acceleration efficiently. Those tools can consider two strategies for picking a single
acceleration at each time step:

• a worst-case scenario selection, where we choose the acceleration that will take the ownship
closer to or less far apart from the intruder.

• always select the acceleration in the middle.

Given the current system state (h, ḣ0, τ, adv), the new advisory adv′ and the acceleration
ḧ0, the new state of the system (h(t + 1), ḣ0(t + 1), τ(t + 1), adv(t + 1)) can be computed as
follows:

h(t+ 1) = h− ḣ0∆τ − 0.5ḧ0∆τ2

ḣ0(t+ 1) = ḣ0 + ḧ0∆τ
τ(t+ 1) = τ −∆τ

adv(t+ 1) = adv′

where ∆τ = 1.

96

ARCH-COMP21 AINNCS Johnson et al

Specification For this benchmark the aim is to verify that the ownship is outside of the
NMAC zone after k ∈ {1, . . . , 10} time steps, i.e., h(k) > 100 or h(k) < −100, for all possible
choices of acceleration by the pilot. The set of initial states considered is as follows: h(0) ∈
[−133,−129], ḣ0(0) ∈ {−19.5,−22.5,−25.5,−28.5}, τ(0) = 25 and adv(0) = COC.

3.5 Single Pendulum Benchmark

This is the classical inverted pendulum environment. A ball of mass m is attached to a massless
beam of length L. The beam is actuated with a torque T and we assume viscous friction exists
with a coefficient of c. The governing equation of motion can be obtained as:

θ̈ =
g

L
sin θ +

1

mL2

(
T − c θ̇

)
(4)

where θ is the angle that link makes with the upward vertical axis, and θ̇ is the angular velocity.
The state vector is:

[θ, θ̇] (5)

Controllers are trained using behavior cloning, a supervised learning approach for training
controllers. Here, a neural network is trained to replicate expert demonstrations. We initially
generate a set of expert control inputs for trajectories originating from different initial states of
the system. Expert control inputs are defined as those that lead the system to reach to its goal
state in finite time. The expert control inputs are generated using optimal control techniques.
Specifically, we have used an implementation of LQR (Linear Quadratic Regulator) and iLQR
(iterative LQR) control. The code for these implementations, as well as training procedures,
are provided.

The continuous-time equations of motion may be written as a series of first order ODEs
where x1 = θ and x2 = θ̇:

ẋ1 =x2 (6a)

ẋ2 =
g

L
sinx1 +

1

mL2
(T − c x2) (6b)

The difference equations for the discrete time version of the system are obtained by using
forward Euler integration:

x1t+1
=x1t + ẋ1t∆t (7a)

x2t+1
=x2t + ẋ2t∆t (7b)

The model involves several parameters, as follows.

m = 0.5, L = 0.5, c = 0., g = 1.0

The controller timestep (and dynamics timestep for discrete time) for controller single

pendulum is ∆t = 0.05. The initial set is

[θ, θ̇] = [1.0, 1.2]× [0.0, 0.2].

Specification The discrete-time safety specification is: ∀nt : 10 ≤ nt ≤ 20, θ ∈ [0.0, 1.0]. The
continuous-time safety specification is 0.5 ≤ t ≤ 1, θ ∈ [0, 1].

97

ARCH-COMP21 AINNCS Johnson et al

1

2 g

x

y

Figure 3: Inverted double pendulum. The goal is to keep the pendulum upright (dashed
schematics)

3.6 Double Pendulum Benchmark

Double pendulum is an inverted two-link pendulum with equal point masses m at the end of
connected mass-less links of length L. The links are actuated with torques T1 and T2 and we
assume viscous friction exists with a coefficient of c. The governing equations of motion are:

2θ̈1 + θ̈2 cos(θ2 − θ1)− θ̇22 sin(θ2 − θ1)− 2
g

L
sin θ1 +

c

mL2
θ̇1 =

1

mL2
T1 (8a)

θ̈1 cos(θ2 − θ1) + θ̈2 + θ̇21 sin(θ2 − θ1)− g

L
sin θ2 +

c

mL2
θ̇2 =

1

mL2
T2 (8b)

where θ1 and θ2 are the angles that links make with the upward vertical axis (seeFigure 3).
The state is:

[θ1, θ2, θ̇1, θ̇2] (9)

The angular velocity and acceleration of links are denoted with θ̇1, θ̇2, θ̈1 and θ̈2 and g is the
gravitational acceleration.

The controllers for the double pendulum benchmark are obtained using the same methods
as the controllers for the single pendulum benchmark: behavior cloning from LQR and iLQR
trajectories. The continuous-time equations of motion may be written as a series of first order
ODEs where x1 = θ1, x2 = θ2, x3 = θ̇1 and x4 = θ̇2. See eq 11. The difference equations for
the discrete time version of the system are obtained by using forward Euler integration:

xit+1
=xit + ẋit∆t for i ∈ [1, 2, 3, 4]. (10)

The model involves several parameters:

m = 0.5, L = 0.5, c = 0., g = 1.0.

Specification This benchmark has two controllers, each with slightly different specifications.
Use controller double pendulum less robust with ∆t = 0.05. The initial set is

[θ1, θ2, θ̇1θ̇2] = [1.0, 1.3]4.

98

ARCH-COMP21 AINNCS Johnson et al

The safety specification is

∀nt ≤ 20, [θ1, θ2, θ̇1θ̇2] ∈ [−1.0, 1.7]4.

The continuous time version is the same as the discrete-time version, with nt = 20 corresponding
to tmax = 0.05 ∗ 20 = 1sec.

Use controller double pendulum more robust with ∆t = 0.02. The initial set is

[θ1, θ2, θ̇1θ̇2] = [1.0, 1.3]4.

The safety specification is

∀nt ≤ 20, [θ1, θ2, θ̇1θ̇2] ∈ [−0.5, 1.5]4.

The continuous time version is the same as the discrete-time version, with nt = 20 corresponding
to tmax = 0.02 ∗ 20 = 0.4sec.

These equations are generated with Matlab:

ẋ1 =x3 (11a)

ẋ2 =x4 (11b)

ẋ3 =
9
(
x3

2 sin (x1 − x2)−9
(

g sin(x1)
L − x4

2 sin(x1−x2)
2 + T1−c x3

2L2 m

)
+ g sin(x2)

L + T2−c x4

L2 m

)
2
(

cos2(x1−x2)
2 − 1

)
(11c)

− x4
2 sin (x1 − x2)

2
+
g sin (x1)

L
+
T1 − c x3
2L2m

(11d)

ẋ4 =−
x3

2 sin (x1 − x2)−9
(

g sin(x1)
L − x4

2 sin(x1−x2)
2 + T1−c x3

2L2 m

)
+ g sin(x2)

L + T2−c x4

L2 m

cos2(x1−x2)
2 − 1

,

(11e)

where 9 = cos (x1 − x2) .

3.7 Airplane Benchmark

The airplane example consists of a dynamical system that is a simple model of a flying airplane.
It can be visualized in Figure 4. The state is:

[x, y, z, u, v, w, φ, θ, ψ, r, p, q] (12)

where (x, y, z) is the position of the C.G., (u, v, w) are the components of velocity in (x, y, z)
directions, (p, q, r) are body rotation rates, and (φ, θ, ψ) are the Euler angles. The equations of
motion are reduced to:

u̇ =− g sin θ +
Fx

m
− qw + rv (13a)

v̇ =g cos θ sinφ+
Fy

m
− ru+ pw (13b)

ẇ =g cos θ cosφ+
Fz

m
− pv + qu (13c)

Ixṗ+ Ixz ṙ =Mx − (Iz − Iy)qr − Ixzpq (13d)

Iy q̇ =My − Ixz
(
r2 − p2

)
− (Ix − Iz)pr (13e)

Ixz ṗ+ Iz ṙ =Mz − (Iy − Ix)qp− Ixzrq. (13f)

99

ARCH-COMP21 AINNCS Johnson et al

x

z

top view

front view

x

y

y
z

Figure 4: The airplane example.

The mass of the airplane is denoted with m and Ix, Iy, Iz and Ixz are the moment of inertia
with respect to the indicated axis; see Figure 4. The controls parameters include three force
components Fx, Fy and Fz and three moment components Mx,My,Mz. Notice that for sim-
plicity, we have assumed the aerodynamic forces are absorbed in the F ’s. In addition to these
six equations, we have six additional kinematic equations:ẋẏ

ż

 =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

uv
w

 (14)

and φθ
ψ

 =

1 tan θ sinφ tan θ cosφ
0 cosφ − sinφ
0 sec θ sinφ sec θ cosφ

pq
r

 (15)

As in the pendulum benchmarks, controllers are trained for the airplane problem using
behavior cloning from LQR and iLQR trajectories.

The state is defined to be [x, y, z, u, v, w, φ, θ, ψ, r, p, q] and the derivatives that form the
system of continuous time equations are specified in eqs 13,14,15. The difference equations
for the discrete time version of the system are obtained by using the following mapping:
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12] = [x, y, z, u, v, w, φ, θ, ψ, r, p, q] and forward Euler
integration:

xit+1
=xit + ẋit∆t for i ∈ [1, 2, 3, 4]. (16)

The system involves the following model parameters:

m = 1, Ix = Iy = Iz = 1, Ixz = 0, g = 1

100

ARCH-COMP21 AINNCS Johnson et al

Figure 5: JuliaReach. Analysis results of the ACC benchmark. The plot additionally shows
simulations.

Use the controller airplane with ∆t = 0.1. The initial set is

x = y = z = r = p = q = 0, [u, v, w, φ, θ, ψ] = [0.0, 1.0]6.

Specification The safety specification is

∀nt : nt ≤ 20, y ∈ [−0.5, 0.5], [φ, θ, ψ] = [−1.0, 1.0]3.

The continuous time version is the same as the discrete-time version, with nt = 20 corresponding
to tmax = .1 ∗ 20 = 2sec.

4 Verification Results

For each of the participating tools, we obtained verification results for each of the proposed
benchmarks. Reachable sets are shown for those methods that are able to construct them.

4.1 JuliaReach

This subsection presents the results of JuliaReach. JuliaReach was able to analyze seven bench-
mark problems (three verified, four falsified). For each problem, JuliaReach uses slightly differ-
ent settings and sometimes only analyzes a certain scenario, as described below.

4.1.1 ACC

Using the parameters abstol=1e-6, orderT=6, orderQ=1, JuliaReach verifies the property
Drel ≥ Dsafe for the whole time horizon in half a second. The reach sets of Drel and Dsafe

together with some simulations are shown in Figure 5.

4.1.2 Sherlock-Benchmark-9

The TORA benchmark problem is challenging because the uncertainty in the variables x3 and
x4 grows quickly in a set-based analysis. Using the parameters abstol=1e-10, orderT=8,

orderQ=3 and splitting the initial states into 4 × 4 × 3 × 5 boxes, JuliaReach verifies the
property in 34 minutes for the homogeneous controller. The reach sets of all 240 runs together
with some simulations, projected to x1/x2 resp. x3/x4, are shown in Figure 6.

101

ARCH-COMP21 AINNCS Johnson et al

Figure 6: JuliaReach. Analysis results of the TORA benchmark. The plots additionally show
simulations.

Figure 7: JuliaReach. Analysis results of the Unicycle benchmark. The first two plots show
the overall reach sets and simulations. The other two plots show a close-up of the target set.
The orange subset of the last reach set is obtained at time point t = 10.

102

ARCH-COMP21 AINNCS Johnson et al

Figure 8: JuliaReach. Simulations of the VCAS benchmark.

4.1.3 Sherlock-Benchmark-10

The disturbance w is modeled here as a constant with uncertain initial value. Simulations show
that the target set is reached only in the last moment, so the analysis requires a high precision
to prove containment of the last reach set. Using the parameters abstol=1e-15, orderT=10,

orderQ=1 and splitting the initial states into 3×1×8×1 boxes, JuliaReach verifies the property
in 100 seconds. The reach sets of all 24 runs together with some simulations, projected to x1/x2
resp. x3/x4, are shown in Figure 7. JuliaReach can evaluate the Taylor polynomial at the time
point t = 10 (rather than the last time interval), which results in a more precise result (as
shown in the plots), although for this problem that additional precision is not required: the
reach set for the last time interval is already fully contained in the target set.

4.1.4 VCAS

The VCAS benchmark problem differs from the other problems in that it uses multiple con-
trollers and discrete time. There is currently no native support for this setting in JuliaReach,
so a custom simulation algorithm that always chooses the central acceleration was used. Ju-
liaReach produces ten simulations and falsifies the property in one second. The simulation
results are shown in Figure 8.

4.1.5 Single Pendulum

This system violates the specification; hence it suffices to start the analysis from a subset of
the initial states and interrupt when a violation is detected. Here, when starting from the
highest coordinate in each dimension, a violation occurs within eleven control periods. Using
the parameters abstol=1e-7, orderT=4, orderQ=1, JuliaReach falsifies the property in half
a second. The reach sets together with a simulation, projected to time and θ, are shown in
Figure 9.

4.1.6 Double Pendulum

This system violates the specification for both controllers; hence, it suffices to start the analysis
from a subset of the initial states and interrupt when a violation is detected. Here, when
considering the less robust controller and starting from the highest coordinate in each dimension,
a violation occurs within five control periods. Similarly, when considering the more robust

103

ARCH-COMP21 AINNCS Johnson et al

Figure 9: JuliaReach. Analysis results of the Single-Pendulum benchmark until time t = 0.55.
The plot additionally shows a simulation.

Figure 10: JuliaReach. Analysis results of the Double-Pendulum benchmark. The first plot
shows the results for the less robust controller until time t = 0.25. The second plot shows
the results for the more robust controller until time t = 0.14. The plots additionally show a
simulation.

controller and starting from the lowest coordinate in each dimension, a violation occurs within
seven control periods. Using the parameters abstol=1e-9, orderT=8, orderQ=1 and an older
version of the Taylor-model algorithm, JuliaReach falsifies the property in 46 seconds (less
robust controller) resp. 40 seconds (more robust controller). The reach sets together with a
simulation, projected to θ̇1/θ̇2, are shown in Figure 10.

4.1.7 Airplane

This system violates the specification; hence, it suffices to start the analysis from a subset
of the initial states and interrupt when a violation is detected. Here, when starting from the
highest coordinate in each dimension, a violation occurs immediately in dimension θ and within
four control periods in dimension y. To obtain some nontrivial results, JuliaReach ignores
the violation in dimension θ. Using the parameters abstol=1e-10, orderT=7, orderQ=1,
JuliaReach falsifies the property in nine seconds. The reach sets together with a simulation,
projected to y/φ resp. θ/ψ, are shown in Figure 11.

104

ARCH-COMP21 AINNCS Johnson et al

Figure 11: JuliaReach. Analysis results of the Airplane benchmark until time t = 0.4. The
plots additionally show a simulation.

4.2 NNV

We present the results utilizing NNV on each of the benchmarks. One addition to this year’s
results is the comparison between two reachability methods used for continuous-time nonlinear
systems. The first one, referred to as zono, uses zonotopes to compute the reach sets of the
plants and star sets for the controller, while the second one, referred to as poly, uses polynomial
zonotopes to compute the reach sets of the plant and star sets for the controller. For de-
tails about the reachability parameters used, such as reachability step size for continuous-time
systems or the zonotope order, we refer to the submission code available at NNV/ARCH2021.

4.2.1 ACC

For the ACC benchmark, we present results using a neural network controller with 101 neurons
(5-by-20) with ReLU activation functions, and use a time horizon of 5 seconds, as shown in
Figure 12. We observe that the safety of the car is guaranteed, as the intersection of the actual
(relative) and safe distance is empty throughout the 5-second time horizon. Results are only
shown using the zono method.

4.2.2 Sherlock-Benchmark-9

The results are displayed in Figure 13, being the lin method on top and the poly on the bottom.
The result is unknown due to the use of over-approximation analysis. Although the first three
dimensions satisfy the safety property, the fourth does not on both executions.

4.2.3 Sherlock-Benchmark-10

On this benchmark, NNV runs out of memory due to the number of computation steps and
splits needed in the computation of the plant’s reachable sets. We have plotted a graph with
the first two dimensions in Figure 14. One can see how the size of the reachable sets increases
as time progresses. This growth leads to NNV running out of memory with both methods.

105

https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/ARCH-COMP2021/benchmarks

ARCH-COMP21 AINNCS Johnson et al

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

40

50

60

70

80

90

100

110

D
is

ta
nc

e
(m

)

Figure 12: NNV. Reachability analysis results of the ACC benchmark using a controller with
5 hidden layers (ReLU) of 20 neurons each.

4.2.4 TORA Heterogeneous

The experimental results for both of the controllers considered in our analysis are similar.
Both result in a verification result of unknown due to the over-approximate scheme utilized
for nonlinear functions. In both cases, we initialize the analysis with a smaller initial set than
initially proposed in order to promote faster computation. The experiments demonstrate that
due to the over-approximation scheme, the system may reach the proposed area, but it is not
guaranteed. The results for the ReluTanh controller are shown in Figure 15 and the results for
the sigmoid controller are shown in Figure 16. The zono results are on the left and the poly
results on the right, where only the reach sets at each control period are shown.

4.2.5 VCAS

For the VCAS Benchmark, there are two scenarios that we investigate. The first one is the
worst-case scenario, where we show that after 3 steps, the system is unsafe under all possible
initial velocities. The results are shown in Figure 17. For the second case, choosing the middle
acceleration when possible, we also show that the system is unsafe after a few steps for all
possible initial velocities. Results are shown in Figure 18.

4.2.6 Single Pendulum

The verification result for the single pendulum system is unsafe, as shown in Figure 19. The
angle θ is not within the bounds [0.0, 1.0] after 10 time steps in both executions.

106

ARCH-COMP21 AINNCS Johnson et al

Figure 13: NNV. Reachability analysis results of the TORA Sherlock benchmark 9. All
dimensions are shown: Dimensions 1 and 2 are plotted in the left figure, dimensions 3 and 4 in
the right. zono on the top, poly on the bottom.

4.2.7 Double Pendulum

The results for the system with the less robust controller are shown in Figure 20. One can see
that dimensions 1, 2 and 4 still satisfy the safety property, but dimension 3 does not due to
the over-approximate analysis. The results for the system with the more robust controller are
shown in Figure 21. This is a similar case to the previous controller, as dimension 3 does not
satisfy the safety property while the other still do. Both plots present the zono results on top
and the poly results on the bottom.

107

ARCH-COMP21 AINNCS Johnson et al

Figure 14: NNV. Reachability Analysis results for benchmark 10 (Unicycle). zono method
shown on top, poly on the bottom.

4.2.8 Airplane

The airplane benchmark is a high-dimensional nonlinear benchmark, which makes the analysis
very computationally expensive. The analysis was computed for 13 control steps. After these
steps, each dimension satisfies the safety property except for dimension 2, which due to the
over-approximation in the reachable sets, reaches the -1 and 1 safety boundaries both the zono
and poly. The resulting reachable sets are shown in Figure 22.

4.3 Verisig

Verisig supports NNs with smooth activations, so it only applies to two of the benchmarks in
this year’s competition.

108

ARCH-COMP21 AINNCS Johnson et al

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x2

Figure 15: NNV. Reachability analysis results of TORA with ReLU-Tanh controller using
zono on the left and poly on the right.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

-1.5

-1

-0.5

0

0.5

1

x2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

-1.5

-1

-0.5

0

0.5

1

x2

Figure 16: NNV. Reachability analysis results of TORA with sigmoid controller using zono
on the left and poly on the right.

4.3.1 ACC

We used Verisig on the ACC benchmark with a tanh controller. Since that controller results in
slightly different performance, we modified the initial conditions to the following set: xlead(0)
∈ [90,91], vlead(0) ∈ [32,30.05], γlead(0) = γego(0) = 0, vego(0) ∈ [30, 30.05], xego ∈ [10,11]. The
reachable sets for Drel and Dsafe are shown in Figure 23. As can seen in the figure, the safety
of the car is guaranteed for the 5s window of interest.

109

ARCH-COMP21 AINNCS Johnson et al

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-280

-260

-240

-220

-200

-180

-160

-140

-120

-100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-260

-240

-220

-200

-180

-160

-140

-120

-100

-80

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-260

-240

-220

-200

-180

-160

-140

-120

-100

-80

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-220

-200

-180

-160

-140

-120

-100

-80

-60

D
is

ta
nc

e
(f

t)

Figure 17: NNV. VCAS results when choosing the worst possible acceleration.

4.3.2 Tora Heterogeneous

The reachable sets produced by Verisig on the Tora benchmark with a sigmoid controller are
presented in Figure 24. As can be seen in the figure, Verisig is able to maintain tight reachable
sets due to effective preconditioning and shrink wrapping.

5 Category Status and Challenges

In the third iteration of the AINNCS category at ARCH-COMP, the participating tools Ju-
liaReach, NNV and Verisig successfully analyzed different aspects of the benchmark problems.
In spite of some success analyzing the benchmarks, the primary outcome of this third iteration
of the AINNCS category are the challenges that arose in the competition and the improvements
with respect to the last two competitions. We discuss these next.

110

ARCH-COMP21 AINNCS Johnson et al

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-300

-280

-260

-240

-220

-200

-180

-160

-140

-120

-100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-350

-300

-250

-200

-150

-100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-280

-260

-240

-220

-200

-180

-160

-140

-120

-100

-80

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-260

-240

-220

-200

-180

-160

-140

-120

-100

-80

D
is

ta
nc

e
(f

t)

Figure 18: NNV. VCAS results when we choose the middle acceleration.

Hybrid Controllers: Some controllers involve a hybrid nature. In this year’s competition,
this type of controller only appears in the VCAS benchmark. This is a very complex control
system formed by 9 different neural networks that are chosen based on plant’s states. These
controllers have also a bang-bang output characteristic, meaning that the output range is not
continuous, but is chosen from a discrete set of values depending on the current neural network
executed, as well as all output values and the aircraft states. We observe that two thirds of the
tools successfully verify this benchmark, which is an improvement from previous iterations.

Plant Models: This year we have only considered nonlinear plants, both in discrete and
continuous time. A majority of the tools only support discrete or continuous time, with Verisig
being the only tool with no support for both type of dynamics (only continuous-time). In
comparison to last year, only 1 out of the 4 participating tools had direct support for both
kind of dynamics. We plan to add linear as well as hybrid automata plants in future iterations,
as we look to report a more complete analysis of the participating verification tools. Hybrid
automata plants will be especially interesting with the complex nature of combined continuous
and discrete dynamics, which is very challenging for current AINNCS verification tools.

111

ARCH-COMP21 AINNCS Johnson et al

0 5 10 15 20 25

Time steps

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

T
he

ta

0 5 10 15 20 25

Time steps

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

T
he

ta

Figure 19: NNV. Single pendulum reachable sets. On the left, zono, on the right, poly.

Activation Function Types: For this year’s set of benchmarks, all neural network con-
trollers contain one or more of the following activation functions: ReLU, linear, sigmoid, and
tanh. This is a step forward from last year’s competition, as nonlinear activation functions were
included. However, not all tools have support for all activation functions, with some supporting
only ReLU and linear activation functions at the time the report was written.

Neural Network Architectures and Parameterization: When we compare the neural
network architectures presented in this work with some of the networks that can be analyzed in
absence of the plant, these are fairly simple, in the sense none of the networks have more than
a thousand neurons, and none exceed 5 hidden layers in their architecture. Also, the maximum
number of inputs and outputs of the controllers are 12 and 6, respectively, in the airplane
benchmark. If we consider the VCAS benchmark, these networks have 9 outputs, although these
are translated into a single input to the plant model. Thus, the dimensionality of the neural
network controllers and plant states have significantly increased compared to first year. We plan
to increase the complexity of these in the upcoming years. Additionally, the verification results
presented assumed the neural networks are fixed, while other parameterizations are possible,
some of which were partly explored (e.g., using different network architectures or activation
functions for a given plant). In any event, there are state-space explosion and scalability issues
to address in both the neural network controllers and plant analysis.

Time horizons: Similar to last year’s competition, all the tools performed bounded (finite)
time horizon verification analysis, also known as bounded model checking, where the main
difference is that all the participating tools rely on reachability analysis methods to analyze
safety. Alternative approaches for performing unbounded (infinite) time horizon verification
exist, such as those building on barrier certificates, a form of continuous analog of the classical
inductive invariance proof rule. The existing methods could incorporate invariance checks on
the computed reachable states to attempt to determine if the reachability analysis reaches a

112

ARCH-COMP21 AINNCS Johnson et al

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

x1

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

x2

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

x3

-1

-0.5

0

0.5

1

1.5

x4

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

x1

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

x2

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

x3

-1.5

-1

-0.5

0

0.5

1

1.5

x4

Figure 20: NNV. Double pendulum with less robust controller.

fixed-point (if the reachability analysis terminates, which for the class of systems considered,
is not guaranteed as the reachability analysis with nonlinear plants is undecidable). However,
no current methods evaluated in the competition utilize this approach, and this is a promising
avenue for future work to provide guarantees beyond finite time horizons.

Model Formats: Similar to last year, we have found more useful and convenient to simply
share the plant models in a plain format, such as MATLAB functions, where the participants
could easily extract the ODEs. As for the neural network models, we provide them in the
ONNX format3, .mat format4, and the original format used by proposer of the benchmark.
ONNX format was very convenient as most of the participating tools have integrated ONNX
into their frameworks this year. However, we found that there are discrepancies among the
different versions and frameworks these ONNX models were created from. Having a unified
ONNX version remains a challenge, but we are closer to achieving this goal, and initiatives

3Open Neural Network Exchange: https://github.com/onnx/onnx
4Direct input format used by NNV without transformation.

113

https://github.com/onnx/onnx

ARCH-COMP21 AINNCS Johnson et al

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12

x1

0.99

1

1.01

1.02

1.03

1.04

1.05

x2

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

x3

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x4

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12

x1

0.99

1

1.01

1.02

1.03

1.04

1.05

x2

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

x3

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x4

Figure 21: NNV. Double pendulum with more robust controller.

more focused on neural network verification, such as VNN-LIB5 and VNN-COMP6, may help
toward this goal. On the other hand, we have found some disparities in the understanding
of some specifications / normalization variables in two benchmarks. In future competitions,
we will further discuss other input formats for specifications and normalization functions to
eliminate these misinterpretations.

6 Conclusion and Outlook

This report presents the results on the third ARCH friendly competition for closed-loop systems
with neural network controllers. For the third edition, three tools have participated and at-
tempted to solve 7 benchmarks: JuliaReach, NNV, and Verisig. The problems elucidated in this
paper are challenging and diverse; the presented results probably provide the most complete
assessment of current tools for the safety verification in AINNCS. We note that each tool has
unique strengths and that not all of the specificities can be highlighted within a single report.

5http://www.vnnlib.org/
6https://github.com/verivital/vnn-comp/

114

http://www.vnnlib.org/
https://github.com/verivital/vnn-comp/

ARCH-COMP21 AINNCS Johnson et al

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

7

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x 10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

8

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x 11

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

9

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x 12

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

7

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x 10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

8

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x 11

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

9

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x 12

Airplane x
9
 vs. x

12

Figure 22: NNV. Airplane reachable sets. In red, the safety boundaries. On the top, the zono
results (magenta) and poly results on the bottom (blue).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

50

55

60

65

70

75

80

Figure 23: Reachable sets produced by Verisig on the ACC benchmark with a tanh controller.
Reachable sets for Drel and Dsafe are shown in green and blue, respectively.

However, the report provides a good overview of the intellectual progression of this rapidly
growing field, and it is our hope to stimulate the development of efficient and effective methods
capable of use in real-world applications. In the past two years, we observe that the numbers
of benchmarks and difficulty of these have increased from the first iteration, which is a good
indicator for this growing and maturing field. We have also seen some improvements in some
of the tools that previously participated in the first iteration, and new tools being developed
every year, such as the recent JuliaReach that help push this field forward.

We would also like to encourage other tool developers to consider participating next year.
All authors agree that although the participation consumes time, we have gained unique insights
that will allow us to improve in the next iteration. Particularly those items listed in the status
and challenges section. The reports of other categories can be found in the proceedings and on
the ARCH website: cps-vo.org/group/ARCH.

115

http://cps-vo.org/group/ARCH

ARCH-COMP21 AINNCS Johnson et al

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x
1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2

Figure 24: Reachable sets produced by Verisig on the Tora Heterogeneous benchmark with a
sigmoid controller.

7 Acknowledgments

The material presented in this report is based upon work supported by the National Science
Foundation (NSF) under grant numbers FMitF 1918450 and EPCN 2028001, and the Defense
Advanced Research Projects Agency (DARPA) Assured Autonomy program through contract
number FA8750-18-C-0089. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of
DARPA or NSF. Luis Benet acknowledges support from PAPIIT grant IG-100819.

A Specification of Used Machines

A.1 MJuliaReach

• Processor: Intel Core i5-5200U CPU@2.20GHz, running 64-bit Ubuntu 20.04.

• Memory: 8 GB

A.2 Mnnv

• Processor: Intel Core i7-8750H CPU @ 2.20GHz x 12

• Memory: 32 GB

A.3 Mverisig

• Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz x 40

• Memory: 755 GB

116

ARCH-COMP21 AINNCS Johnson et al

References

[1] Proceedings of the 7th International Conference On Formal Methods In Software Engineering,
FormaliSE 2019, collocated with ICSE 2019, Montréal, Canada, May 27, 2019. ACM, 2019.

[2] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, pages 120–151, 2015.

[3] M. Althoff and D. Grebenyuk. Implementation of interval arithmetic in CORA 2016. In Proc.
of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems,
pages 91–105, 2016.

[4] M. Althoff, D. Grebenyuk, and N. Kochdumper. Implementation of Taylor models in CORA
2018. In Proc. of the 5th International Workshop on Applied Verification for Continuous and
Hybrid Systems, 2018.

[5] Rajeev Alur. Formal Verification of Hybrid Systems. In Proceedings of the Ninth ACM Inter-
national Conference on Embedded Software, EMSOFT ’11, pages 273–278, New York, NY, USA,
2011. ACM.

[6] S. Bak, S. Bogomolov, T. A. Henzinger, T. T. Johnson, and P. Prakash. Scalable static hybridiza-
tion methods for analysis of nonlinear systems. In Proc. of the 19th ACM International Conference
on Hybrid Systems: Computation and Control, pages 155–164, 2016.

[7] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. Hyst: A source transformation and
translation tool for hybrid automaton models. In Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, HSCC ’15, pages 128–133, New York, NY, USA,
2015. ACM.

[8] Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. 2021.

[9] Luis Benet, Marcelo Forets, David P. Sanders, and Christian Schilling. Taylormodels.jl: Taylor
models in julia and its application to validated solutions of ODEs. In SWIM, 2019.

[10] Luis Benet and David P. Sanders. TaylorSeries.jl: Taylor expansions in one and several variables
in Julia. Journal of Open Source Software, 4(36):1043, 2019.

[11] Luis Benet and David P. Sanders. JuliaDiff/TaylorSeries.jl. https://github.com/JuliaDiff/

TaylorSeries.jl, 2021.

[12] Luis Benet and David P. Sanders. JuliaIntervals/TaylorModels.jl. https://github.com/

JuliaIntervals/TaylorModels.jl, 2021.

[13] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling.
JuliaReach: a toolbox for set-based reachability. In HSCC, pages 39–44. ACM, 2019.

[14] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In International Conference on Computer Aided Verification, pages 258–263.
Springer, 2013.

[15] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. Reachability analysis for neural
feedback systems using regressive polynomial rule inference. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, HSCC 2019, Montreal,
QC, Canada, April 16-18, 2019., pages 157–168, 2019.

[16] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Learning and ver-
ification of feedback control systems using feedforward neural networks. IFAC-PapersOnLine,
51(16):151 – 156, 2018. 6th IFAC Conference on Analysis and Design of Hybrid Systems ADHS
2018.

[17] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A. Mann, and Pushmeet
Kohli. A Dual Approach to Scalable Verification of Deep Networks. CoRR, abs/1803.06567, 2018.

[18] Marcelo Forets and Christian Schilling. JuliaReach/LazySets.jl. https://github.com/

JuliaReach/LazySets.jl, 2021.

117

https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaReach/LazySets.jl
https://github.com/JuliaReach/LazySets.jl

ARCH-COMP21 AINNCS Johnson et al

[19] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Case study: Verifying the
safety of an autonomous racing car with a neural network controller. In International Conference
on Hybrid Systems: Computation and Control, 2020.

[20] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Verisig 2.0: Verification of
neural network controllers using taylor model preconditioning. In 33rd International Conference
on Computer-Aided Verification, 2021.

[21] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Verisig: verifying safety properties of
hybrid systems with neural network controllers. Proceedings of the 22nd International Conference
on Hybrid Systems: Computation and Control, 2019.

[22] Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pappas, and Insup
Lee. Verifying the safety of autonomous systems with neural network controllers. ACM Trans.
Embed. Comput. Syst., 20(1), December 2020.

[23] M. Jankovic, D. Fontaine, and P. V. Kokotovic. Tora example: cascade- and passivity-based
control designs. IEEE Transactions on Control Systems Technology, 4(3):292–297, May 1996.

[24] Taylor T Johnson, Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Elena Botoeva,
Francesco Leofante, Amir Maleki, Chelsea Sidrane, Jiameng Fan, and Chao Huang. Arch-comp20
category report: Artificial intelligence and neural network control systems (ainncs) for continuous
and hybrid systems plants. In Goran Frehse and Matthias Althoff, editors, ARCH20. 7th Interna-
tional Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20), volume 74
of EPiC Series in Computing, pages 107–139. EasyChair, 2020.

[25] K. D. Julian and M. J. Kochenderfer. A reachability method for verifying dynamical systems with
deep neural network controllers. CoRR, abs/1903.00520, 2019.

[26] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Rupak Majumdar and Viktor Kunčak,
editors, Computer Aided Verification, pages 97–117, Cham, 2017. Springer International Publish-
ing.

[27] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
CoRR, abs/1607.02533, 2016.

[28] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher A. Strong, Clark W. Barrett, and
Mykel J. Kochenderfer. Algorithms for verifying deep neural networks. Found. Trends Optim.,
4(3-4):244–404, 2021.

[29] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E. Alsaadi. A Survey
of Deep Neural Network Architectures and their Applications. Neurocomputing, 234:11 – 26, 2017.

[30] Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Souradeep Dutta, Taylor J. Carpen-
ter, Radoslav Ivanov, and Taylor T. Johnson. Arch-comp19 category report: Artificial intelligence
and neural network control systems (ainncs) for continuous and hybrid systems plants. In Goran
Frehse and Matthias Althoff, editors, ARCH19. 6th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems, volume 61 of EPiC Series in Computing, pages 103–119.
EasyChair, 2019.

[31] K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neural
networks. IEEE Transactions on Neural Networks, 1(1):4–27, March 1990.

[32] Jorge A. Pérez-Hernández and Luis Benet. PerezHz/TaylorIntegration.jl. https://github.com/

PerezHz/TaylorIntegration.jl, 2021.

[33] S. Joe Qin and Thomas A. Badgwell. An overview of nonlinear model predictive control appli-
cations. In Frank Allgöwer and Alex Zheng, editors, Nonlinear Model Predictive Control, pages
369–392, Basel, 2000. Birkhäuser Basel.

[34] Christopher Rackauckas and Qing Nie. Differentialequations.jl – a performant and feature-rich
ecosystem for solving differential equations in julia. The Journal of Open Research Software, 5(1),
2017. Exported from https://app.dimensions.ai on 2019/05/05.

118

https://github.com/PerezHz/TaylorIntegration.jl
https://github.com/PerezHz/TaylorIntegration.jl

ARCH-COMP21 AINNCS Johnson et al

[35] Stuart Russell, Daniel Dewey, and Max Tegmark. Research Priorities for Robust and Beneficial
Artificial Intelligence. AI Magazine, 36(4):105, 2015.

[36] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. Fast
and effective robustness certification. In NeurIPS, pages 10825–10836, 2018.

[37] Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Ju-
lia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Kevin Leyton-Brown, David C. Parkes,
William Press, AnnaLee Saxenian, Julie Shah, Milind Tambe, and Astro Teller. ”artificial intelli-
gence and life in 2030.” one hundred year study on artificial intelligence: Report of the 2015-2016
study panel, 2016.

[38] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013.

[39] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. Verification of deep
convolutional neural networks using imagestars. In 32nd International Conference on Computer-
Aided Verification (CAV). Springer, July 2020.

[40] Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T. Johnson, and
Xenofon Koutsoukos. Safety verification of cyber-physical systems with reinforcement learning
control. ACM Trans. Embed. Comput. Syst., 18(5s), October 2019.

[41] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen,
Weiming Xiang, and Taylor T. Johnson. Star-based reachability analysis of deep neural networks.
In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira, editors, Formal Methods – The
Next 30 Years, pages 670–686. Springer International Publishing, 2019.

[42] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T. Johnson. NNV: The neural network verification
tool for deep neural networks and learning-enabled cyber-physical systems. In 32nd International
Conference on Computer-Aided Verification (CAV), July 2020.

[43] Weiming Xiang and Taylor T. Johnson. Reachability analysis and safety verification for neural
network control systems. CoRR, abs/1805.09944, 2018.

[44] Weiming Xiang, Patrick Musau, Ayana A. Wild, Diego Manzanas Lopez, Nathaniel Hamilton,
Xiaodong Yang, Joel A. Rosenfeld, and Taylor T. Johnson. Verification for machine learning,
autonomy, and neural networks survey. CoRR, abs/1810.01989, 2018.

[45] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set estimation and
verification for multi-layer neural networks. CoRR, abs/1708.03322, 2017.

[46] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Reachable set computation and safety
verification for neural networks with relu activations. CoRR, abs/1712.08163, 2017.

[47] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set estimation and
verification for multi-layer neural networks. IEEE Transactions on Neural Networks and Learning
Systems (TNNLS), 2018.

[48] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Specification-guided safety verification
for feedforward neural networks. CoRR, abs/1812.06161, 2018.

[49] Weiming Xiang, Hoang-Dung Tran, Xiaodong Yang, and Taylor T. Johnson. Reachable set esti-
mation for neural network control systems: A simulation-guided approach. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–10, 2020.

119

	Introduction
	Participating Tools
	Benchmarks
	Adaptive Cruise Controller (ACC)
	Sherlock-Benchmark-9 (TORA)
	Sherlock-Benchmark-10 (Unicycle Car Model)
	VCAS Benchmark
	Single Pendulum Benchmark
	Double Pendulum Benchmark
	Airplane Benchmark

	Verification Results
	JuliaReach
	ACC
	Sherlock-Benchmark-9
	Sherlock-Benchmark-10
	VCAS
	Single Pendulum
	Double Pendulum
	Airplane

	NNV
	ACC
	Sherlock-Benchmark-9
	Sherlock-Benchmark-10
	TORA Heterogeneous
	VCAS
	Single Pendulum
	Double Pendulum
	Airplane

	Verisig
	ACC
	Tora Heterogeneous

	Category Status and Challenges
	Conclusion and Outlook
	Acknowledgments
	Specification of Used Machines
	MJuliaReach
	Mnnv
	Mverisig

