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Abstract

The problem of optimizing trajectory tracking algorithms is considered. Based on
measurements of a moving object, such algorithms iteratively make estimates of its state.
These algorithms contain parameters that affect the quality of their work, for example,
the noise variances in a mathematical model of the object’s dynamics. A multicriteria
evolutionary optimization algorithm for such parameters is proposed based on genetic
procedures. We also elaborate a procedure for using this algorithm on real data in which
random measurement errors are simulated along the real trajectory. The system of criteria
is proposed that assesses both the total mean square deviation of the trajectory tracking
algorithm’s output and the quality of its transition processes after a change of the object’s
motion mode. The algorithm was tested on model and real air traffic data.

1 Introduction

This study focuses on optimizing trajectory tracking algorithms. The problem statement and
the associated formulas overlap with the authors’ previous works [4, 3], and in some cases,
formulas are repeated for consistency in notation.

Trajectory tracking algorithms estimate the position of a moving object, as well as its ve-
locity vector and possibly other motion parameters. These estimates are based on the history
of object position measurements up to the current time instant. A classical example of such
an algorithm is the Kalman Filter (KF) [1]. One of the most widely used trajectory track-
ing algorithms for an aircraft as a moving object is the Interacting Multiple Model (IMM)
algorithm [21]. In the rest of the text, we will consider specifically this case of a moving object.

Let us assume that the aircraft’s position is measured at discrete time instants ti. Various
types of measurement systems exist. Radars are typical for aircraft [1]. The relationship
between the aircraft position and the measurement y(ti) can be described as follows:

y(ti) = xG(ti) + wi,k(ti). (1)
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Here, xG is the geometric part of the state vector, it represents the aircraft position and consists
of the north and east coordinates: xG = [xN xE ]

T ∈ R2; k(ti) is the identifier, which a mea-
surement system (radar) active at time ti. The random measurement errors wi,k are assumed

to be centered E{wi,k} = 0, with a covariance matrix Wk(ti) = E
{
wi,kw

T
i,k

}
, which depends

on the time ti. Generally, the variance of random errors for radar measurements depends on
the relative positioning of the aircraft and the radar. However, this dependence is relatively
weak [1], and we can reasonably assume that Wk(xG(ti)) ≈ Wk(χ) for any possible χ ∈ R2

near xG(ti). Given the fact, that y(ti) is also near xG(ti), one can compute matrices using y(ti)
instead of xG(ti) for any ti. Therefore, we can assume that the covariance matrices Wk(ti) are
known in advance and depend only on the measurement number: Vi := Wk(ti)(y(ti)).

The trajectory tracking algorithm processes a set of measurements {yi}ni=1 available up to
the last measurement time tn, to produce an estimate x̂out(tn) of part xout(tn) of the motion
parameters of the aircraft, that someone is interested in [1, 12]. For example, there can be
position xG, velocity vector v = ẋG and other motion parameters as acceleration, turn rate and

so on: xout =
[
xG

T vT . . .
]T
. For simplicity, we consider only the case xout = xG.

Typically, each algorithm has parameters that influence its performance. For example, the
simplest tracking algorithm, the so-called alpha-beta filter [1, 14], has two parameters: α, β,
each with a simple interpretation. The filter follows these equations:

x̂G(ti) = x̄G(ti) + α (y(ti)− x̄G(ti)) ,

v̂(ti) = v̄(ti) + β (y(ti)− x̄G(ti)) /dti. (2)

Here, x̄G(ti), v̄(ti) are the predicted values of position xG(ti) and velocity v(ti) = ẋG(ti),
respectively, and dti = ti − ti−1. Predictions are made using the Constant Velocity (CV)
model [20]:

x̄G(ti) = x̂G(ti−1) + v̂(ti−1)dti,

v̄(ti) = v̂(ti−1). (3)

The form of equations (2) makes interpretation of α and β clear: α is the coefficient of
position update and β is the velocity update coefficient. Depending on the values of α and β,
the algorithm exhibits different behaviors. Setting α = 1 results in a trivial estimate where
the last measurement is taken as the output x̂G(ti) = y(ti). Conversely, when α = 0, the
estimate coincides with the prediction x̄G(ti). Thus, values of α close to 1 correspond to strong
coalescence with measurements, while values close to 0 correspond to over-reliance on previous
predictions. A similar interpretation can be done for the connection between the coefficient β
and the velocity vector.

Fig. 1 illustrates examples of algorithm behavior for different α values (and fixed β for
simplicity). Here, α are chosen from set {0.13, 0.6, 0.8, 0.9} and β = 0.01. The filter runs here
on real aircraft measurements. The aircraft moves from left to right, black dashed line shows
“almost true” aircraft’s trajectory: the data from precise measurement system (namely, GPS),
circles are positions on the true trajectory at the radar measurement instants (they are made
by interpolation). The solid black line depicts the radar measurements. The zigzag pattern is
conditioned by the radar random errors (see equation (1)). The differences in the algorithm’s
behavior for different α are evident. The value of α = 0.13 smooths the data effectively, and
closely approximates the true aircraft trajectory while the aircraft moves straight. However, the
transition to circular motion causes a “catastrophic” event: the algorithm loses the trajectory
and only comes close to it after a long period of time. Algorithms with α = 0.6, 0.8, 0.9 (red,
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green and magenta lines, respectively) are very close to radar measurements throughout the
entire motion, without losing tracking the true trajectory at the start of the circular motion
segment. This clearly shows that as the value of α increases, the estimated trajectory becomes
closer to the measurements, but further away from the true trajectory due to higher variance.
On the other hand, smaller values of α result in a smoother estimated trajectory with a closer
distance to the true one. However, these smaller values also cause a poorer response to changes
in motion mode (from a straight-line to a circular in this example).

Figure 1: Trajectory tracking using the alpha-beta filter with different values of α.

We see that the selection of α and β values influences tracking performance, and there are at
least two meanings of the word “performance”: the first can be called ”track smoothness” (the
output track of estimates has less variance than the measurements) and the second is connected
to the ability to overcome sudden changes in the aircraft’s motion mode.

This problems of dependence on parameters and two meanings of tracking quality arise for
other algorithms too. In [2], authors presented simulations, which show, that the model lying
behind KF and its parameters influence on mean square error (MSE) in position and velocity
estimations. Additionally it is showed there that IMM algorithm usually outperform KF and
its MSE also has dependence on algorithm’s structure (which motion models are used in it).
The simulations in [2] clearly shows that the MSE value usually has a peak after a maneuver’s
onset, and the value of this peak can depend on the structure or the parameters in another way
as the MSE level during stationary motion time period. Analogous simulations and conclusions
exist in [12, 22]. In standards of EUROCONTROL (the central organization in Europe for
coordination and planning of air traffic control), such as in [10], performance criteria are not
formulated only in terms of total MSE along whole trajectory, but also in the transitional
properties of the MSE as a function of time.

There are a lot of publications devoted to parameter adjustment for tracking algorithms.
For example, choosing of IMM algorithm parameters was considered in [1, 6, 22, 17, 24, 8].
In one part of them, adaptive versions of IMM algorithm is described [24, 8] where parameters
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are changed during the tracking process. In the other part, the parameters are chosen before
tracking process by a procedure, which optimizes some cost function [6, 17]. There are examples
of genetic or evolutionary algorithms use in optimization [15, 23]. The parameter tuning of basic
KF algorithm is also wide presented in literature [6, 25, 5]. For the alpha-beta filter, parameter
adjustment problem can be partial solved analytically [11, 14] (only in the case of equal dti and
Wi = σ2I = const).

Previously, our research team developed an evolution procedure for optimizing trajectory
tracking algorithms in non-adaptive way as in [6, 17, 15, 23]. And this evolution procedure was
implemented to the IMM tracker with particular structure [4, 3]. The optimization methodology
for this procedure is based on the use of artificial data. The work with real data seemed us to be
very complicated due to presence of outliers in the measurement, systematic errors of radars.
In addition, modeling makes it easier to generate large amounts of data and, for artificial
measurements, there is no problem with what the true trajectory is, to compare estimation
results. Unfortunately, when we tried to apply the optimization results in a tracking system
with real-world aircraft traffic, we found that the tracking quality only increased slightly or
not at all. Also this runs on real data showed some problems with transitions between motion
modes like that the alpha-beta filter with α = 0.13 demonstrates in Fig. 1.

To overcome these problems, we decided to develop a methodology for optimizing trajectory
tracking algorithms based on real data, as well as to introduce criteria that directly penalize
poor transitions between motion modes. In this paper, we present our new methodology and
the new criteria. We then show the work of the updated evolutionary procedure using the
simplest alpha-beta filter as the optimization object. This was chosen because there are only
two parameters in it, and all calculations can be done quickly.

2 Mean square criteria

The performance of trajectory tracking algorithms is typically evaluated using the mean square
error (MSE) between the algorithm’s estimates and the true positions at the same time instants
on a trajectory. The MSE is generally assessed in different “channels.” Traditionally, these
channels include longitudinal deviation tng, lateral deviation ort, velocity magnitude vel, and
track angle ang [10]. The particular level of such criterion at a certan point on a trajectory of an
aircraft depends not only the aircraft’s motion parameters, but also on the overall surveillance
conditions, i.e. the variances of random radar errors, the frequency of measurement updates,
the distance between the point to the radars and so on. In EUROCONTROL standard [10],
a set of detailed scenarios is proposed, specifying all these conditions and defining reference
accuracy levels for the algorithms. According to EUROCONTROL, algorithm designers must
make the MSE lower than these accuracy levels, without necessarily optimizing beyond them.
Subsequently, it is assumed that either simulations are carried out in accordance with these
scenarios, or only those real trajectories that fully match the scenario conditions are considered.
In [3], the authors discussed the problems with such accuracy levels and proposed, instead of
predefined scenarios, using the Cramér–Rao lower bound [16] as the reference accuracy for
arbitrary simulation conditions.

If the motion model is unknown or the trajectory of a real aircraft is considered, the Cramér–
Rao bound cannot be used. However, algorithms can still be compared with each other. For
example, the Kalman filter for the Constant Velocity (CV) model or another well-investigated
algorithm with predictable behavior can be used as a reference algorithm. The authors propose
that, when working with real data, empirical covariance matrices V̂et(t) (and one-dimensional
empirical root mean square deviations σ̂et,ch) be constructed for a selected reference algorithm
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et using simulation for each measurement time.
In [3], it was proposed to compare the difference between the estimated x̂(t) and the true

state vector x(t) to the reference value (the the Cramér–Rao bound was used as a reference
there), calculate the deviations in relative units, and use them as the basis for evaluation criteria.
Now, we can use V̂et(t) instead of it and calculate the relative deviations δet,ch(t) in a simiar as
in [3] way:

δet,ch =
hch(x̂)− hch(x)

σ̂et,ch
, δet,2d(t) = (x̂G(t)− xG(t))

T
V̂ −1
et,G(t) (x̂G(t)− xG(t)) . (4)

Here, hch is the scalar function for “projecting” onto the one-dimensional channel ch (for
example, it can be inner product to the specific vector); 2d refers to the deviation in the observed
two-dimensional position on the plane; V̂et,G(t) is a submatrix of the empirical covariance matrix

V̂et(t) for the reference algorithm, associated with the geometric position on the plane; σ̂et,ch(t)

is the reference MSE level for channel ch, derived from V̂et(t):

σ̂2
et,ch(t) =

(
∂hch

∂x

)
V̂et(t)

(
∂hch

∂x

)T

.

The final formula for the mean square criteria, based on the reference algorithm, consists of
the time-averaged values of δcr,ch(t) or δet,ch along a single trajectory x(t), and then averaged
over the set of all trajectories X = {x(·)} in the training set.

Currently, a scheme is used that simulates a subset of random measurement realizations
yω(t) along a single true trajectory x(·). In this case, the averaging is also performed over
random realizations:

Jch(X,Ω) =
1

nΩ

∑
x(·)∈X

nx(·)

∑
x(·)∈X

∑
ti∈Tx(·)

∑
ω∈Ω

δ2et,ch,x(·),ω(ti). (5)

Here, Ω is the set of random realizations ω with a total count of nΩ; Tx(·) are the measurement
time instants for trajectory x(·), and nx(·) is their number; δet,ch,x(·),ω(ti) is the value of δet,ch(ti)
calculated using formula (4) for trajectory x(·) based on the random measurement realization ω
(the algorithm’s responses x̂(ti) depend on the random realization of measurements).

3 Transitional criteria

It is known that at the boundaries of stationary motion segments, tracking algorithms have
an error spike, associated with the time required by the algorithm (rather a certain number
of measurements) “to understand” the end of the previous segment [2, 12]. As an example,
we can again refer to Fig. 1. In some cases, the spike is indeed caused by the time needed
to recognize the inconsistency between the current motion and the model from the previous
segment. Such algorithms were discussed, for example, in [12, 19]. In other cases, such as for
the IMM algorithm, time is required to adjust the model probability vector [21, 1].

Mean square criteria only partially describe the behavior of trajectory tracking algorithms.
Real trajectories typically include long segments of stationary motion (mostly straight-line), and
the mean square error reflects behavior mainly on these segments, proportional to their duration
in the overall motion. Transition process segments are relatively short, so the algorithm’s
behavior on them has little impact on the mean square criteria. This is further compounded by
the fact that, during transition processes, the MSE of the reference algorithm has higher values
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than in stationary segments [2, 21, 22]. Thus, in formula (4), the denominator becomes large,
and the same deviation (e.g., in meters) is assessed much lower during a transition process
segment.

The term of transition processes can be formulated in many ways, but most often it can be
associated with situations when the estimate loses the property to be centered relative to the
true trajectory (as for alpha-beta filter with α = 0.13 in Fig. 1). That is, at these time instants,
the output state vector has a bias:

b(t) = E{x̂out(t)} − xout(t).

The authors decided to use the time integral of the bias as a criterion for the quality of transition
processes. As with the MSE criteria, the bias is proposed to be divided into “channels,” similar
to those introduced in Section 2.

In EUROCONTROL standard [10], the criteria for evaluating the quality of the transition
process are the peak MSE after the onset of a new motion segment and the period during which
MSE decreases from its peak to a specified level above the required MSE for stationary segments.
The authors believe that minimizing the integral of bias b(t) along the trajectory minimizes the
EUROCONTROL criterion. The idea is as follows: the informal formula states that MSE(t) =
b2(t) + Variance(t) [16], and there is an observation that the variance of “good” trajectory
algorithms does not vary rapidly over time, including transitions. Another observation is that,
on stationary motion segments, the bias of “good” algorithms is sufficiently small. Therefore,
the peak of MSE is largely determined by the peak of bias, which is small on stationary segments.
Minimizing the peaks of bias can decrease the peaks of MSE, and the integral of the bias is a
characteristic that takes into account the height and width of the peaks.

It should be noted that a small bias does not imply it is zero. For instance, the Kalman
filter, designed for straight-line constant velocity (CV) motion, has unavoidable bias on circular
motion segments (the coordinated turn (CT) model [20]). However, the magnitude of this bias
is quasi-stationary and much smaller than the error spike caused by a mode change. More
complex algorithms that take into account variability of the dynamics, such as the IMM with
both CV and CT dynamics, will have an advantage in this case: on both stationary segments,
CV and CT, the IMM will have near-zero bias [1, 2, 22].

For transition process criteria, the bias estimates b̂ are used instead of b and they projected
also onto individual channels. The bias estimate b̂ in channel ch at time instant ti is calculated
as follows:

b̂ch(ti) = hch(x(ti))−
1

nΩ

∑
ω∈Ω

hch(x̂ω(ti)), b̂2d(ti) = xG(ti)−
1

nΩ

∑
ω∈Ω

x̂G,ω(ti). (6)

Here, the formula 1
nΩ

∑
ω∈Ω denotes empirical averaging over random realizations. The estimate

of bias in channel ch for the reference algorithm et is further in similar fashion denoted as b̂ch,et.
Unlike the criteria (5), comparison with the reference at every time instant along the trajec-

tory, as in formula (4), does not have much meaning. The reason is that, for different algorithms,
the peak bias b(t) will occur at different time instants t, and the behavior of b(t) as a function
of t can vary significantly: some algorithms show a monotonic decrease, while others oscillate.
On the other hand, absolute values (e.g., in meters) are unsuitable for the same reasons as for
MSE criteria—due to the magnitude can significantly vary in accordance with the observation
scenario. Taking both considerations into account, the authors decided to divide trajectories
into relatively short stationary motion segments and, for each segment, calculate the ratio of
the integrals of the absolute value of the bias, for two biases of estimates obtained using the
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tested and reference algorithms:

rj,x(·),ch =

∑
ti∈Tj(x(·))

∣∣∣b̂ch(ti)∣∣∣ dti+1∑
ti∈Tj(x(·))

∣∣∣b̂ch,et(ti)∣∣∣ dti+1

. (7)

Here, Tj(x(·)) represents consecutive time moments belonging to stationary segment j. For 2d
channel, the formula should be modified slightly: modulus |·| should be replaced by Euclidean

norm ∥·∥ for b̂2d from (6).
For more accurate results when nΩ is small, it is better to use different sets of random real-

izations Ω for a tested algorithm and the reference one (in the numerator and the denominator
of (8)).

The overall criterion value is obtained by averaging over segments and trajectories:

Ich(X,Ω) =
1∑

x(·)∈X

mch,x(·)

∑
x(·)∈X

∑
j∈Mch,x(·)

rj,x(·),ch. (8)

Here, Mch,x(·) is the set of segments in trajectory x(·) for channel ch, and mch,x(·) is the number
of such segments.

For lateral deviation ort and track angle ang channels, the segments are determined as fol-
lows. For real data, data from Automatic Dependent Surveillance–Broadcast system (ADS-B)
[9] is used. Trajectories with uninterrupted data of track angle φ are selected, and piecewise-
linear approximation to these data is applied, with variation of the number of possible intervals
of linear dependency pattern. The intervals’ endpoints of the approximation procedure are
considered as the intervals of constant value of lateral accleration uort. For piecewise-linear
approximation, the authors used the package [13].

The package requires an initial approximation for stable work. This was obtained as follows.
First, an estimate of lateral acceleration ûort is calculated for the trajectory using the numerical
derivative ˆ̇φ of the track angle and the measured by ADS-B value of velocity magnitude v:

ˆ̇φ(ti) =
φ(ti+10)− φ(ti)

ti+10 − ti
, ûort(ti) = v(ti) ˆ̇φ(ti),

(it should be noted that v and φ are measurements, and their accuracy is assumed to be good,
with outliers removed by preliminary procedures). This estimate is then smoothed using a
20-second sliding window, and the resulting smoothed values are compared to a threshold of
0.1 m/s2. This threshold is used to determine the presence or absence of straight-line motion in
accordance with EUROCONTROL [10]. The time instants ti where the threshold is exceeded
are used as the initial approximation for the piecewise-linear approximation procedure.

A similar procedure is used for the longitudinal deviation tng and speed magnitude vel
channels. The difference is that longitudinal acceleration ûtng is estimated as:

ûtng =
v(ti+10)− v(ti)

ti+10 − ti
.

The smoothing period and threshold values are the same as for ûort (corresponding to [10]).
For the 2d channel, the segments are formed by intersecting the segments from the lateral ort
and longitudinal tng channels.
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Fig. 2 shows the track angle φ (in degrees, ◦) for one of the real aircraft trajectories (a typical
passenger jet flight). The blue dots represent the values from the corresponding ADS-B field.
The magenta line shows the numerical derivative ˆ̇φ (in radians per second) of φ, and the orange
line represents the smoothed ûort (in m/s2), computed using the given formula. The blue line
indicates the points where the smoothed ûort exceeded the threshold in either the positive or
negative direction. The green line shows the piecewise-linear approximation of track angle φ,
and the green points correspond to the interval boundaries.

Figure 2: Example of segment finding in the lateral ort channel. Track angle φ measurements
are shown as blue dots, and the green line represents the piecewise-linear approximation.

4 Evolutionary procedure

The algorithms being optimized have parameters. Let us call a fixed point a in the parameters’
space as an “individual,” as, for example, in [7]. Each “individual” a corresponds to an object
in evolutionary procedure, for which all the criteria are calculated and evolutionary operators
are applied.

The entire problem can be summarized as follows:{
(Jch1

(a), Ich1
(a), Jch2

(a), Ich2
(a), . . .) −→

a
min,

a ∈ A,

where chi is in the list of channels [tng, ort, vel, ang, 2d], and A is a set of constraints to a
values. Next, we make optimization only for the 2d channel criteria, so the problem can be
written shorter: {

(J2d(a), I2d(a)) −→
a

min,

a ∈ A.

We elaborated the following scheme for optimizing trajectory tracking algorithms using real
data and the evolutionary procedure, which we made before [4, 3].
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1. Among real trajectories, those with long segments of ADS-B signal recordings are selected
(the specification for ADS-B parameters can be found in [9]). From these segments, the
longest one is selected with a maximum ADS-B data gap of 20 seconds. Additionally,
it is required that the data includes not only position but also speed and track angle
information. Confirmed high accuracy of ADS-B is also required: the PIC (Position
Integrity Category) field must have a value greater than or equal to 7. This way the
general set of trajectories X is created.

2. For the time instants ti of the real radar measurements, the aircraft’s motion parame-
ters are fitted by linear interpolation from ADS-B measurements. Based on the known
characteristics of the radar systems, covariance matrices Wi at ti are constructed and
recorded.

3. A simulation is performed in which nΩ′ random realizations of measurement errors are
generated. For each realization, the estimated trajectory x̂et(ti) is calculated for the
reference algorithm. The average track of the reference algorithm’s estimates is computed,
along with the reference MSE matrix V̂et(ti), for use in formula (4), and the bias esitmates

b̂ch,et, for formula (7), are calculated.

4. The optimization process starts with an initial set of individuals A0 = {a}. At each
step l of the optimization, computations are performed with a subset X of the general
set of trajectories X . For each trajectory x(·) ∈ X, and for each individual from the
current set a ∈ Al, a simulation is performed with nΩ random realizations of measurement
errors and measurement tracks {yω(ti)}ti∈Tx(·) are generated. For each of these tracks, the
algorithm a processes the data, computes the corresponding estimate track {x̂(ti)}ti∈Tx(·) ,
and calculates the criteria (5), (8).

5. The entire population undergoes non-dominated sorting [7], after which individuals with
clearly non-optimal criteria values are identified. In dependence on age of an individual,
the individual is identified as “bad” if it has rank after the non-dominated sorting is
greater than 3 (for an usual “not young” individual) or 1 (for an individual, for which all
the trajectories in the dataset are used in calculations, so called an “elder” individual).
These individuals are discarded and do not participate in further calculations (but for the
“young” individuals the discarding is postponed). The details of the sorting are in the
authors’ previous works [3, 4].

6. Evolutionary algorithm steps are performed, which are described in details in the authors’
previous works [3, 4].

Steps 4–5 are repeated until the Pareto front stabilizes, which means, that all the individuals
in the Pareto front are the same during a some preconditioned number of steps.

5 Work example

As an example how the evolutionary procedure work, we present the results of the optimizia-
tion the alpha-beta filter, which is maybe the simplest trajectory tracking algorithm. There are
complex versions of the alpha-beta filter exist [1], which are essentially simplified (and precom-
puted offline) versions of the Kalman filter, designed for certain constant dynamics. However,
we consider the simplest version of the algorithm [14] with the formulas provided above: (2), (3).
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This filter contains only two parameters, α and β, with a simple constraint:

α, β ∈ [0, 1].

The downside of such a simple algorithm is that it does not account for measurement covari-
ances Vi, and therefore, it cannot have equal effectiveness across different observation scenarios.
Another known drawback is its poor handling of maneuvers [1], such as coordinated turns (CT)
and accelerations [20]. Nevertheless, this simple example is useful for illustrating the work of
the multi-criteria procedure and visually demonstrating the dependence of the criteria on the
parameters.

Unfortunately, direct implementation of formula (2) leads to unstable work for some pa-
rameter subset (for β near 1 and α small). In several simulations, the filter estimate x̂ “runs
away” suddenly to infinity. It was connected to the dti in denominator in formula (2) for v̂
update. When dti and dti+1 for consecutive steps are very different, there can be a “jump” in
the velocity estimate. To overcome this difficulty, we modified formula (2) slightly in the part
of v̂ update:

v̂(ti) = v̄(ti) + SatCv

(
β (y(ti)− x̄G(ti)) /dti

)
, (9)

where the saturation function defined as

SatC(x) =

{
x, ∥x∥ ≤ C,
x

∥x∥C, ∥x∥ > C,

and Cv is the upper bound for velocity update. We used Cv = 100 m/s.
There are many publications that present analytical derivations for choosing the parameters

of the alpha-beta filter. However, we found that in these analyses, only the case dti = dt = const
and Wi = σ2

wI = const is considered. The most cited paper on this topic is [14], in which the
steady-state filter conditions are investigated, they yield the formula for coefficients:

Λ2 =
β2

1− α
, β = 2(2− α)− 4

√
1− α. (10)

Here, Λ is the so-called tracking index. The formula of it is as follows:

Λ =
σa(dt)

2

σw
, (11)

where σa is the intensity of the dynamic Gaussian white noise in acceleration, σw is the standard
deviation of the measurement noise.

The starting set of individuals A0 consisted of a single individual a0 = (α = 1, β = 1). The
optimization dataset included 156 real civil jet trajectories provided by NITA, LLC. NITA also
provided its trajectory tracking algorithm, which we treated as a black box, and used as the
reference algorithm in our evolutionary procedure, step 3. The number of random realizations
for the reference algorithm in formulas (4), (7) was equal to 1000.

Optimization was performed based on two criteria: MSE in geometric 2-d position J2d and
the integral of the absolute mean deviation in geometric 2-d position I2d. The evolutionary
algorithm computations were performed on the Uran supercomputer at the IMM UB RAS
[18], using 200 workers, with a computation time of 104 hours. A total of 800 generations
were processed. Each generation worked with one real data trajectory, and 10000 random
measurement realizations were generated. The population limit was 2000 individuals.
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In Fig. 3, the best individuals from “elders” (in the sense of step 5 of the evolutionary
algorithm) are shown on the plane of criteria J2d and I2d. The final Pareto front, calculated
after generation 800, is displayed in blue. The points corresponding to earlier Pareto fronts
from generations 170 and 350 are shown in magenta and red, respectively. The green marker
corresponds to the “zero individual” (starting point) a0 with the parameters α = 1, β = 1. The
evolution of the Pareto front was very rapid: the best individuals from 170 generations and 350
lie near the final front from 800 generation.

In Fig. 4, the Pareto optimal set of “elders” is shown in the plane of parameters α, β
(blue crosses). The green line depicts the theoretical relationship between β and α by second
equation in (10). The Pareto set not coincide with the theoretic manifold, but the part with
β > 0.5 seems to be close to it. The reason why they do not coincide is due to the fact that
this theoretical relationship was developed for the case where dti and Wi are constant, while in
real data, dti varies as well as Wi. Also, obtaining the relations (10), (11) in [11, 14] did not
imply any direct optimization of MSE or other criterion.

Figures 5 and 6 show the dependence of the criteria J2d and I2d on the parameters α (Fig. 5)
and β (Fig. 6) for the “elders” comprising the Pareto front.

Figure 3: The Pareto front on the plane of criteria J2d and I2d as a result of optimization.
Generations 170 (magenta), 350 (red), and 800 (blue, the final generation) are shown. The green
point is the initial individual.

In Fig. 7, the work of the algorithms is demonstrated on an artificial test trajectory. A
magnified fragment of the trajectory is shown. The true trajectory (ADS-B measurements) is
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Figure 4: The Pareto optimal set of individuals (blue crosses) in the plane of parameters α and
β. The green line shows the theoretical relationship between β and α, as described by second
of equations (10).

indicated by a black dashed line with circles at the measurement times. The measurements
are represented by a solid black line. Two ”individuals” from the Pareto optimal set are
shown: (α = 0.2605, β = 0.004782) (red line), (α = 0.4907, β = 0.07217) (green line), and one
parameter pair, which was previously presented in Fig. 1 (α = 0.6, β = 0.01) (blue line). These
two Pareto optimal parameters produce smoother estimates than the non-optimized case. The
red line has the smoothest trajectory, but it deviates significantly from the measurements in
the circular motion segment and has significant bias. The blue line has the largest variance.
The green line balances variance and bias well.

6 Conclusions

The new methodics for optimization of trajectory tracking algorithms with use of real aircraft
trajectories and simulated measurements was implemented to the simplest tracking algorithm,
alpha-beta filter. The Pareto front and the Pareto optimal set for the algorithm’s parameters
were found.

The authors thank LLC ”NITA” for providing real navigation system data and for their
collaboration in designing the tracking algorithms.
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Figure 5: Dependence of the criteria J2d and I2d on parameter α.

Figure 6: Dependence of the criteria J2d and I2d on parameter β.
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Figure 7: Reconstructed trajectory of the alpha-beta filter for parameters found in optimization.
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