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benet@icf.unam.mx

5 University of Dayton, Dayton, OH, United States
xchen4@udayton.edu

6 Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The
Netherlands

pieter.collins@maastrichtuniversity.nl
7 Universidad de la República, Montevideo, Uruguay

mforets@gmail.com,dfreire@fisica.edu.uy
8 Computer Science Department, Carnegie Mellon University, United States

fimmler@cs.cmu.edu
9 Departamento de F́ısica, Facultad de Ciencias,

Universidad Nacional Autónoma de México (UNAM), Mexico City, México
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Abstract

We present the results of a friendly competition for formal verification of continuous
and hybrid systems with nonlinear continuous dynamics. The friendly competition took
place as part of the workshop Applied Verification for Continuous and Hybrid Systems
(ARCH) in 2020. This year, 6 tools Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and
JuliaReach (in alphabetic order) participated. These tools are applied to solve reachability
analysis problems on six benchmark problems, two of them featuring hybrid dynamics. We
do not rank the tools based on the results, but show the current status and discover the
potential advantages of different tools.

G. Frehse and M. Althoff (eds.), ARCH20 (EPiC Series in Computing, vol. 74), pp. 49–75
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1 Introduction

Disclaimer The presented report of the ARCH friendly competition for continuous and
hybrid systems with nonlinear dynamics aims at providing a landscape of the current capa-
bilities of verification tools. We would like to stress that each tool has unique strengths—
though not all of their features can be highlighted within a single report. To reach a
consensus in what benchmarks are used, some compromises had to be made so that some
tools may benefit more from the presented choice than others. The obtained results have
been verified by an independent repeatability evaluation. To establish further trustworthi-
ness of the results, the code with which the results have been obtained is publicly available
as Docker [18] containers at gitlab.com/goranf/ARCH-COMP.

In this report, we summarize the results of the fourth ARCH friendly competition on the
reachability analysis of continuous and hybrid systems with nonlinear dynamics. Given a system
defined by a nonlinear Ordinary differential equation (ODE) ~̇x = f(~x, t) along with an initial
condition ~x ∈ X0, we apply the participating tools to prove properties of the state reachable set
in a bounded time horizon. The techniques for solving such a problem are usually very sensitive
to not only the nonlinearity of the dynamics but also the size of the initial set. This is also one
of the main reasons why most of the tools require quite a lot of computational parameters.

In this report, 6 tools, namely Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and Ju-
liaReach participated in solving problems defined on four continuous and two hybrid bench-
marks. The continuous benchmarks are the Production-Destruction system, the Coupled Van
der Pol oscillator, the Laub-Loomis model, and a controlled Quadrotor model. The hybrid
benchmarks model a Lotka-Volterra system with a Tangential Crossing, and a Space Ren-
dezvous system.

The benchmarks are selected based on discussions of the tool authors, with a preference on
keeping a significant set of the benchmarks from the previous year.

2 Participating Tools

Ariadne. (Luca Geretti, Pieter Collins) Ariadne [25, 16] is a library based on Computable
Analysis [41] that uses a rigorous numerical approach to all its algebraic, geometric and logical
operations. In particular, it performs numerical rounding control of all external and internal
operations, in order to enforce conservative interpretation of input specification and guarantee
formal correctness of the computed output. It focuses on nonlinear systems, both continuous
and hybrid, supporting differential and algebraic relations. It is written in C++ with growing
support for a Python interface. The official site for Ariadne is http://www.ariadne-cps.org.

CORA. (Matthias Althoff, Niklas Kochdumper) The tool COntinuous Reachability Analyzer
(CORA) [6, 7] realizes techniques for reachability analysis with a special focus on developing
scalable solutions for verifying hybrid systems with nonlinear continuous dynamics and/or non-
linear differential-algebraic equations. A further focus is on considering uncertain parameters
and system inputs. Due to the modular design of CORA, much functionality can be used for
other purposes that require resource-efficient representations of multi-dimensional sets and op-
erations on them. CORA is implemented as an object-oriented MATLAB code. The modular
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design of CORA makes it possible to use the capabilities of the various set representations for
other purposes besides reachability analysis. While CORA uses verified algorithms, it does
not consider rounding errors since the main focus of the toolbox is the fast prototyping of
new reachability algorithms and concepts, and for this purpose the effect of rounding errors is
usually negligible. CORA is available at cora.in.tum.de.

DynIbex. (Alexandre Chapoutot, Julien Alexandre dit Sandretto) A library merging interval
constraint satisfaction problem algorithms and guaranteed numerical integration methods based
on Runge-Kutta numerical schemes implemented with affine arithmetic. This library is able
to solve ordinary differential equations [2] and algebraic differential equations of index 1 [3],
combined with numerical constraints on state variables and reachable tubes. It produces sound
results taking into account round-off errors in floating-point computations and truncation errors
generated by numerical integration methods [36]. Moreover, constraint satisfaction problem
algorithms offer a convenient approach to check properties on reachable tubes as explained in
[4]. This library implements in a very generic way validated numerical integration methods
based on Runge-Kutta methods without many optimizations. Indeed, the computation of
the local truncation error, for each method, depends only on the coefficients of Runge-Kutta
methods and their order. DynIbex is freely available at http://perso.ensta-paristech.fr/

~chapoutot/dynibex/. Figures have been produced with VIBes library [27] which is available
at http://enstabretagnerobotics.github.io/VIBES/.

Flow*. (Xin Chen) The tool Flow* [23, 21] uses an adapted Taylor Model (TM) integration
method to compute reachable set overapproximations for nonlinear continuous and hybrid sys-
tems. Similar to the original method proposed in [17], an ODE solution, i.e., a function over
the initial set as well as the time variable, over a bounded time interval is overapproximated
by a TM in Flow*, and it therefore forms an overapproximation of the reachable set there. We
also call this TM a TM flowpipe. This year, we evaluate the performance of a new version of
the tool which has the most of the original features implemented and greatly improved. All
of the experiments are done based on the C++ API of the new version. The flowpipe/guard
intersections [22] are better handled in the new version by an improved domain contraction
method, and users are more free to use their own aggregation programs to merge the flowpipes.
As in the previous versions, the result produced by Flow* is guaranteed, all of the roundoff
errors, simplification errors (w.r.t. the cutoff threshold), range overapproximation errors are
taken into account during the flowpipe computation and verification.

Isabelle/HOL-ODE-Numerics. (Fabian Immler) HOL-ODE-Numerics [30, 31] is a col-
lection of rigorous numerical algorithms for continuous systems. It is based on Runge-
Kutta methods implemented with affine arithmetic. The distinctive feature is that all al-
gorithms are formally verified in the interactive theorem prover Isabelle/HOL: everything
from single roundoff errors to the global approximation scheme is proved correct with re-
spect to a formalization of ODEs in Isabelle/HOL. The resulting code is therefore highly
trustworthy. It does, however, not feature many optimizations or the most sophisticated al-
gorithms. We therefore do not expect competitive performance figures. Nevertheless, the
tool should exhibit reasonable performance: it should scale (modulo possibly large constant
factors) like “regular” tools implementing similar algorithms. Isabelle/HOL is available at
https://isabelle.in.tum.de, HOL-ODE-Numerics is part of the Archive of Formal Proofs
http://isa-afp.org/entries/Ordinary_Differential_Equations.shtml.
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JuliaReach. (Marcelo Forets, Christian Schilling, David P. Sanders, Luis Benet, Daniel
Freire) JuliaReach [19] is an open-source software suite for reachability computations of dynam-
ical systems, written in the Julia language and available at http://github.com/JuliaReach.
Linear, nonlinear, and hybrid problems are modeled and solved using the library Reachabil-
ityAnalysis.jl, which can be used interactively, for example in Jupyter notebooks. Our im-
plementation of Taylor models [15] integrates the TaylorSeries.jl [12, 13] package, TaylorInte-
gration.jl [37] and the IntervalArithmetic.jl [14] package for interval methods. The latter is
a self-contained implementation of interval arithmetic in pure Julia, which is competitive, in
terms of performance, with C++ interval packages, and yet has interactive usability similar to
the MATLAB package INTLAB. There are several different implementations of directed round-
ing available in IntervalArithmetic.jl [14]. By default error-free arithmetic is used for the basic
arithmetic operations, to avoid the overhead of changing the processor’s rounding mode; this
effectively makes the package thread-safe. The error-free operations are implemented in the
RoundingEmulator.jl package. Correctly-rounded elementary functions such as sin and cos use
the CRlibm.jl wrapper of the CRlibm library [26]. The algorithm TMJets applied in this report
computes a non-validated integration using a Taylor model of order nT . The coefficients of that
series are polynomials of order nQ in the variables that denote the small variations of the initial
conditions. We obtain a time step from the last two coefficients of this time series. In order
to validate the integration step, we compute a second integration using intervals as coefficients
of the polynomials in time, and we obtain a bound for the integration using a Lagrange-like
remainder. The remainder is used to check the contraction of a Picard iteration. If the combi-
nation of the time step and the remainder do not satisfy the contraction, we iteratively enlarge
the remainder or possibly shrink the time step. Finally, we evaluate the initial Taylor series
with the valid remainder at the time step for which the contraction has been proved, which is
also evaluated in the initial set to yield an over-approximation. The approach is (numerically)
sound due to rigorous interval bounds in the Taylor approximation. Discrete transitions for hy-
brid systems and Taylor model approximations are handled using our set-computations library
LazySets.jl [38].
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3 Benchmarks

For the 2020 edition of the competition we introduced two new benchmarks: the production-
destruction system and the Lotka-Volterra system with tangential crossing. The former is a
continuous system aimed at identifying the stability of integration schemes. The latter intro-
duces nonlinear guards and in particular tangential crossings. In addition, we extended the van
der Pol oscillator to two coupled oscillators, introduced nondeterministic crossing in the space
rendezvous system and performed some input sensitivity analysis for the quadrotor system. The
Laub-Loomis benchmark was not modified, in order to perform a direct comparison with results
from the previous year (since the participants are the same). We also introduce a 4-letter code
for each benchmark followed by the year in the YY format.

Compared with last year, the experimental results are produced on a common platform,
using an Amazon EC2 G4 g4dn.4xlarge instance [1] with 16 Xeon vCPUs and 64 GiB RAM.
Each tool supplied a repeatability package using Docker, with an agreed output format. Due
to issues with the Isabelle/HOL package on the repeatability server, computation time values
are obtained on a laptop machine instead; the values are then normalized by multiplying them
by the speedup factor of the Amazon EC2 G4 machine with respect to the laptop machine,
as calculated for each benchmark using Flow* as a reference tool. To distinguish those timing
values, they are marked by a ”*”.

3.1 Production-destruction benchmark (PRDE20)

3.1.1 Model

A production-destruction system consists of an Ordinary Differential Equation and two con-
straints: positivity and conservativity. It means that the system states are quantities which are
always positive and the sum of these quantities is constant. This particular family of systems
is often used to test the stability of integration schemes.

As proposed by Michaelis-Menten theory [34], a model for three quantities can be defined
as follows: 

ẋ =
−xy
1 + x

ẏ =
xy

1 + x
− ay

ż = ay

with a = 0.3 and the initial condition x(0) = 9.98, y(0) = 0.01 and z(0) = 0.01. In this model,
x is the nutrients, y the phytoplankton and z the detritus. The constraints are x(t), y(t), z(t)
are positive and x(t) + y(t) + z(t) = 10 for all t.

3.1.2 Analysis

We are interested in computing the reachable tube until t = 100 and to verify (or embed) the
constraints. Three setups are considered, depending on the source of bounded uncertainties:

I: x(0) ∈ [9.5, 10.0], i.e., uncertainty on the initial condition;

P : a ∈ [0.296, 0.304], i.e., time-invariant uncertainty on the parameter;

I&P : x(0) ∈ [9.7, 10.0] and a ∈ [0.298, 0.302], i.e., both uncertainties are mixed.

In terms of objectives, at t = 100, the constraints 10 ∈ x+ y + z and x, y, z ≥ 0 have to be
verified.
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Table 1: Results of PRDE20 in terms of computation time and volume of final enclosure.

computation time in [s]

tool I P I&P

Ariadne 8.6 79 39

CORA 16 28 28

DynIbex 12 13 26

Flow* 4.1 9 5.2

Isabelle/HOL 11∗ 12∗ 26∗

JuliaReach 1.5 3.9 3.0

volume of final enclosure

tool I P I&P

Ariadne 1.7e−13 2.3e−17 1.0e−13

CORA 1.2e−21 2.2e−23 2.0e−23

DynIbex 3.9e−17 4.8e−17 1.2e−17

Flow* 8.0e−21 1.4e−22 4.8e−21

Isabelle/HOL 3.31e−20 7.29e−21 2.60e−20

JuliaReach 3.3e−20 6.5e−21 1.0e−20

3.1.3 Evaluation

Two measures are provided for comparison: the volume of the box (x × y × z) enclosing the
final state (at t = 100) and the total time of computation for evolution and verification. All of
these results are obtained for the three setups. Plots of z (in the [0, 11] range) w.r.t. time (in
the [0, 100] range) for the three cases are overlaid in a single figure.

3.1.4 Results

While the satisfaction of the specification seemed to be rather trivial for all tools, there is a wide
degree of difference in the volume of the final enclosure. However from Fig. 1 it is apparent that
similar errors are obtained for z hence the differences in volume are largely due to convergence
quality with respect to x,y, i.e., towards zero. Given these results, improved metrics would
distinguish z from x and y. Also, it seems that ranges in the three setups may overlap, where
the overlapping is different based on the accuracy chosen.

Settings for Ariadne. For all three cases we use a TaylorPicardIntegrator with a maximum
error of 10−6, and use a maximum step size of 0.04.

Settings for CORA. For CORA we apply the conservative linearization approach [9] and
use zonotopes to represent the reachable set. We use a time step size of 1/17 for case I and
1/30 for case I and I&P. Furthermore, we use a maximum zonotope order of 20.
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(a) Ariadne (b) CORA

(c) DynIbex (d) Flow*
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Figure 1: Reachable set overapproximations for PRDE20 in the I, P and I&P setups, for
variable z(t) and t ∈ [0, 100].
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Settings for DynIbex. Reachability analysis is carried out with an (absolute and relative)
error tolerance of 10−8 for I and P, and 10−10 for I&P, using an implicit Gauss-Legendre method
of order 4 and the constraint programming facilities.

Settings for Flow*. We use the same setting for I and I&P, such that the time stepsize is
0.02, TM order is 3, the cutoff threshold is 10−12, and the remainder estimation is [−0.1, 0.1]
for all dimensions. For P, we only raise the TM order to 4.

Settings for Isabelle/HOL. Maximum Zonotope order is set to 18. Reachability analysis
is carried out with an (absolute and relative) error tolerance of 2−16. The initial set of I and
I&P is split into two sets along the x coordinate.

Settings for JuliaReach. For all three cases we use nT = 7, nQ = 1, and an adaptive
absolute tolerance with initial value 10−11 (resp 10−12) is used for I and I&P (resp. P).

3.2 Coupled van der Pol benchmark (CVDP20)

3.2.1 Model

The original van der Pol oscillator was introduced by the Dutch physicist Balthasar van der
Pol. For this benchmark we consider two coupled oscillators, as described in [10]. The system
can be defined by the following ODE with 4 variables:

ẋ1 = y1

ẏ1 = µ(1− x21)y1 − 2x1 + x2

ẋ2 = y2

ẏ2 = µ(1− x22)y2 − 2x2 + x1

(1)

The system has a stable limit cycle that becomes increasingly sharper for higher values of µ.

3.2.2 Analysis

We want to separately verify a safety specification for µ = 1 and µ = 2.

µ = 1: we set the initial condition x1,2(0) ∈ [1.25, 1.55], y1,2(0) ∈ [2.35, 2.45]. The unsafe set
is given by y1,2 ≥ 2.75 in a time horizon of [0, 7]. This is the same specification as the one used
for the single oscillator in the 2019 competition.

µ = 2: we set the initial condition x1,2(0) ∈ [1.55, 1.85], y1,2(0) ∈ [2.35, 2.45], which is the
same size as before, but on the limit cycle for µ = 2. The unsafe set is given by y1,2 ≥ 4.05
for a time horizon of [0, 8]. Note that in this case, the time horizon T = 8.0 is used because
7.0 is not sufficient for the oscillator to make a complete loop. The unsafe set has been slightly
reduced compared with last year, due to the expected greater effort required for the coupled
oscillators.

3.2.3 Evaluation

The computation time required to evolve the system and verify safety is provided for both
values of µ. If the system can not be verified successfully, no value is provided.
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3.2.4 Results

The computation results of the tools are given in Table 2. The increase in complexity for this
benchmark resulted in a significant computational cost, for which Isabelle/HOL was unable to
reach results in a reasonable time for both µ values, while DynIbex failed for µ = 2. Ariadne
and Flow* managed to handle the µ = 2 case with splitting of the initial set, but still with a very
large execution time; JuliaReach used splitting with a much more affordable time, while CORA
succeeded without relying on any splitting strategy. The projection for the first oscillator is
shown in Fig. 2, only for µ = 1 in the case of DynIbex, and with no figures in the case of Flow*
due to the excessively large number of flowpipes.

(a) Ariadne (b) CORA

(c) DynIbex (d) JuliaReach

Figure 2: Reachable set overapproximations for the first oscillator in CVDP20, x1 ∈ [−2.5, 2.5],
y1 ∈ [−4.05, 4.05], overlaid for µ = 1 and µ = 2.
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Table 2: Results of CVDP20 in terms of computation time.

computation time in [s]

tool µ = 1 µ = 2

Ariadne 56 9838

CORA 8.0 122

DynIbex 517 −
Flow* 3.6 3725

Isabelle/HOL − −
JuliaReach 0.4 38

Settings for Ariadne. For µ = 1, we use a TaylorPicardIntegrator with a maximum step
size of 0.005. The maximum spacial error enforced for each step is 10−5. The initial set is split
once on x1 and x2, yielding 4 initial subsets. For µ = 2 instead, the initial set is split into
256 subsets, using a maximum spacial error of 5 × 10−6 and a maximum step size of 0.02. It
must be noted that the memory consumption for µ = 2 is significant, in some cases making the
operating system kill the process on a 16 GB machine during the latter part of the evolution.

Settings for CORA. We manually introduced artificial guard sets orthogonal to the flow of
the system in order to shrink the reachable set so that the linearization error does not explode.
For CORA we then applied the conservative linearization approach [9] using zonotopes with a
zonotope order of 20 and a time step size of 0.01 for µ = 1, and a zonotope order of 100 and a
time step size of 0.001 for µ = 2.

Settings for DynIbex. Maximum zonotope order is set to 100, reachability analysis is car-
ried out with an (absolute and relative) error tolerance of 10−5 using an explicit Heun method
of order 2. For µ = 1 an automatic partition of the initial state is performed (259 boxes are
necessary). For µ = 2, the system cannot be verified in satisfying time.

Settings for Flow*. The tool uses a fixed stepsize 0.02, a fixed TM order 5, the cutoff
threshold 10−7, and the remainder estimation of [−0.1, 0.1] to prove the safety for the benchmark
of µ = 1. For the more challenging case µ = 2, we used a more automatic setting, that is, we
let the tool adaptively select a stepsize between 0.0002 and 0.1 along with a fixed order 6,
the initial set is uniformly divided into 44 pieces and each of them is analyzed independently.
Although the time cost is large, the whole process is done automatically by the tool. Due to
the large number of flowpipes, we don’t show the figures.

Settings for Isabelle/HOL. None of the algorithms implemented in Isabelle/HOL can ver-
ify this problem without excessive subdivisions of the initial set.

Settings for JuliaReach. For both settings we used nQ = 1 and nT = 7, and an adaptive
absolute tolerance. For µ = 2 we split the set of initial states along the x1 and x2 directions
into 64 boxes in total. In this case, the multi-threaded execution (4 threads) runs in 18s.
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3.3 Laub-Loomis benchmark (LALO20)

3.3.1 Model

The Laub-Loomis model is presented in [35] for studying a class of enzymatic activities. The
dynamics can be defined by the following ODE with 7 variables.

ẋ1 = 1.4x3 − 0.9x1
ẋ2 = 2.5x5 − 1.5x2
ẋ3 = 0.6x7 − 0.8x2x3
ẋ4 = 2− 1.3x3x4
ẋ5 = 0.7x1 − x4x5
ẋ6 = 0.3x1 − 3.1x6
ẋ7 = 1.8x6 − 1.5x2x7

The system is asymptotically stable and the equilibrium is the origin.

3.3.2 Analysis

The specification for the analysis is kept the same as last year, in order to better quantify any
improvements to the participating tools.

The initial sets are defined according to the ones used in [40]. They are boxes centered at
x1(0) = 1.2, x2(0) = 1.05, x3(0) = 1.5, x4(0) = 2.4, x5(0) = 1, x6(0) = 0.1, x7(0) = 0.45. The
range of the box in the ith dimension is defined by the interval [xi(0) −W,xi(0) + W ]. The
width W of the initial set is vital to the difficulty of the reachability analysis job. The larger
the initial set the harder the reachability analysis.

We consider W = 0.01, W = 0.05, and W = 0.1. For W = 0.01 and W = 0.05 we consider
the unsafe region defined by x4 ≥ 4.5, while for W = 0.1, the unsafe set is defined by x4 ≥ 5.
The time horizon for all cases is [0, 20].

3.3.3 Evaluation

The final widths of x4 along with the computation times are provided for all three cases. A
figure is provided in the (t, x4) axes, with t ∈ [0, 20], x4 ∈ [1.5, 5], where the three plots are
overlaid.

3.3.4 Results

The computation results of the tools are given in Table 3. It can be seen that enlarging the
initial set size can greatly make the reachability analysis task harder. However, compared with
the previous year, all tools improved the quality of their approximations, which is also apparent
from Figure 3. The tool settings are given as below.

Settings for Ariadne. The maximum step size used is 0.2, with a TaylorPicardIntegrator
with a maximum spacial error of 10−3 enforced for each step. For W = 0.05 and W = 0.1 a
splitting strategy for the initial set is used; the strategy compares the radius of the set with a
reference value, respectively 0.04 and 0.09, in order to split once for each dimension and yield
a total of 128 initial subsets (the minimum amount using the current splitting strategy).
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(a) Ariadne (b) CORA

(c) DynIbex (d) Flow*
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Figure 3: Reachable set overapproximations for LALO20 (overlayed plots for W = 0.01, W =
0.05, W = 0.1). t ∈ [0, 20], x4 ∈ [1.5, 5].
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Table 3: Results of LALO20 in terms of computation time and width of final enclosure.

computation time in [s]

tool W = 0.01 W = 0.05 W = 0.1

Ariadne 4.8 664 1066

CORA 1.8 7.6 39

DynIbex 10 27 1535

Flow* 1.7 2.3 4.0

Isabelle/HOL 8.1∗ 13∗ 575∗

JuliaReach 1.1 1.5 1.4

width of x4 in final enclosure

tool W = 0.01 W = 0.05 W = 0.1

Ariadne 0.037 0.058 0.093

CORA 0.01 0.04 0.12

DynIbex 0.01 0.40 2.07

Flow* 0.007 0.06 0.13

Isabelle/HOL 0.07 0.48 0.87

JuliaReach 0.004 0.017 0.033

Settings for CORA. Depending on the size of the initial set, different algorithms in CORA
are applied. For the smaller initial sets W = 0.01 and W = 0.05, the faster but less accurate
conservative linearization algorithm presented in [9] is executed. For the larger initial set
W = 0.1, the more accurate conservative polynomialization algorithm from [5] is applied.
CORA uses a step size of 0.1 for W = 0.01, a step size of 0.025 for W = 0.05, and a step size
of 0.02 for W = 0.1. The maximum zonotope order for all initial sets is chosen as 200.

Settings for DynIbex. For W = 0.01 the maximum zonotope order is set to 50 and the
reachability analysis is carried out with an (absolute and relative) error tolerance of 10−6 with
an explicit Runge-Kutta method of order 3. For W = 0.05 the maximum zonotope order is set
to 80 and the reachability analysis is carried out with an (absolute and relative) error tolerance
of 10−7 with an explicit Runge-Kutta method of order 3. For W = 0.01 and W = 0.05 no
splitting of the initial conditions is performed. For W = 0.1, the initial set is split 64 times.
With parallelization, computation time is reduced to 249 seconds for this last experiment.

Settings for Flow*. The same setting in Flow* is used for all of the 3 tests: stepsize 0.1,
TM order, 3 ∼ 8, cutoff threshold 10−6, and the remainder estimation [−0.001, 0.001]. Besides,
we turn on the symbolic remainder feature [24] such that we symbolically track the evolution
of the flowpipe remainders for every 300 steps.

Settings for Isabelle/HOL. Maximum Zonotope order is set to 60. Reachability analysis
is carried out with an (absolute and relative) error tolerance of 2−13. For W = 0.1, we split the
initial set along the x1, x2, x3, x4, x5 coordinates, resulting in 32 initial sets that can be checked
in parallel.
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Settings for JuliaReach. We used an absolute tolerance of 10−11 for W = 0.01 and 10−12

for W = 0.05 and W = 0.1. In all cases, nQ = 1, nT = 7.

3.4 Quadrotor benchmark (QUAD20)

3.4.1 Model

We study the dynamics of a quadrotor as derived in [11, eq. (16) - (19)]. Let us first introduce
the variables required to describe the model: the inertial (north) position x1, the inertial (east)
position x2, the altitude x3, the longitudinal velocity x4, the lateral velocity x5, the vertical
velocity x6, the roll angle x7, the pitch angle x8, the yaw angle x9, the roll rate x10, the pitch
rate x11, and the yaw rate x12. We further require the following parameters: gravity constant
g = 9.81 [m/s2], radius of center mass R = 0.1 [m], distance of motors to center mass l = 0.5
[m], motor mass Mrotor = 0.1 [kg], center mass M = 1 [kg], and total mass m = M + 4Mrotor.

From the above parameters we can compute the moments of inertia as

Jx =
2

5
M R2 + 2 l2Mrotor,

Jy =Jx,

Jz =
2

5
M R2 + 4 l2Mrotor.

Finally, we can write the set of ordinary differential equations for the quadrotor according
to [11, eq. (16) - (19)]:

ẋ1 = cos(x8) cos(x9)x4 +
(

sin(x7) sin(x8) cos(x9)− cos(x7) sin(x9)
)
x5

+
(

cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9)
)
x6

ẋ2 = cos(x8) sin(x9)x4 +
(

sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9)
)
x5

+
(

cos(x7) sin(x8) sin(x9)− sin(x7) cos(x9)
)
x6

ẋ3 = sin(x8)x4 − sin(x7) cos(x8)x5 − cos(x7) cos(x8)x6
ẋ4 = x12x5 − x11x6 − g sin(x8)
ẋ5 = x10x6 − x12x4 + g cos(x8) sin(x7)
ẋ6 = x11x4 − x10x5 + g cos(x8) cos(x7)− F

m
ẋ7 = x10 + sin(x7) tan(x8)x11 + cos(x7) tan(x8)x12
ẋ8 = cos(x7)x11 − sin(x7)x12
ẋ9 = sin(x7)

cos(x8)
x11 + cos(x7)

cos(x8)
x12

ẋ10 =
Jy−Jz
Jx

x11x12 + 1
Jx
τφ

ẋ11 = Jz−Jx
Jy

x10x12 + 1
Jy
τθ

ẋ12 =
Jx−Jy
Jz

x10x11 + 1
Jz
τψ

To check interesting control specifications, we stabilize the quadrotor using simple PD con-
trollers for height, roll, and pitch. The inputs to the controller are the desired values for height,
roll, and pitch u1, u2, and u3, respectively. The equations of the controllers are

F = mg − 10(x3 − u1) + 3x6 (height control),
τφ = −(x7 − u2)− x10 (roll control),
τθ = −(x8 − u3)− x11 (pitch control).

We leave the heading uncontrolled so that we set τψ = 0.
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3.4.2 Analysis

The task is to change the height from 0 [m] to 1 [m] within 5 [s]. A goal region [0.98, 1.02] of
the height x3 has to be reached within 5 [s] and the height has to stay below 1.4 for all times.
After 1 [s] the height should stay above 0.9 [m]. The initial value for the position and velocities
(i.e., from x1 to x6) is uncertain and given by [−∆,∆] [m], with ∆ = 0.4. All other variables
are initialized to 0. This preliminary analysis must be followed by a corresponding evolution for
∆ = 0.1 and ∆ = 0.8 while keeping all the settings the same. No goals are specified for these
cases: the objective instead is to understand the scalability of each tool with fixed settings.

3.4.3 Evaluation

Computation times for evolution and analysis are provided for all three cases. A figure is
provided in the (t, x3) axes, with t ∈ [0, 5] and x3 ∈ [−0.8, 1.5], where the three plots are
overlaid.

Table 4: Results of QUAD20 in terms of computation time.

computation time in [s]

tool ∆ = 0.1 ∆ = 0.4 ∆ = 0.8

Ariadne 4.4 4.4 4.5

CORA 5.4 5.4 5.8

DynIbex 878 862 875

Flow* 5.2 5.3 5.2

Isabelle/HOL 42∗ 36∗ 37∗

JuliaReach 2.6 1.9 1.9

3.4.4 Results

The results of the reachability computation for the quadrotor model are given in Figure 4 and
Table 4. All tools were able to produce results for the three setups, in particular the analysis
with varying initial set sizes shows that the system is almost insensible to the initial set.

Settings for Ariadne. The maximum step size is 0.01. A TaylorPicardIntegrator is used
with a maximum spacial error enforced for each step equal to 10−2.

Settings for CORA. For CORA we apply the conservative linearization approach [9] with
a time step size of 0.1 and a maximum zonotope order of 50.

Settings for DynIbex. Maximum zonotope order is set to 60, reachability analysis is carried
out with an (absolute and relative) error tolerance of 10−8 using an explicit Runge-Kutta
method of order 2 (Heun’s method). No splitting of the initial state has been performed. With
∆ = 0.8, the limit 1.4 is violated.
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Figure 4: Reachable set overapproximations for QUAD20 on the t− x3 axes.
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Settings for Flow*. The tool uses the same setting for all of the 3 tests. The stepsize is
fixed at 0.025, and the TM order is selected by the tool from the range of 3 to 8 according to
the remainder estimation [−0.001, 0.001], and the cutoff threshold is 10−6. There is no need to
turn on the symbolic remainder feature.

Settings for Isabelle/HOL. Maximum Zonotope order is set to 25. Reachability analysis
is carried out with an (absolute and relative) error tolerance of 2−10. ∆ = 0.8 violates the limit
1.4.

Settings for JuliaReach. We used nQ = 1, nT = 5 and an absolute tolerance of 10−7 for
all cases.
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3.5 Lotka–Volterra with tangential crossings benchmark (LOVO20)

3.5.1 Model

The benchmark described below refers to the Lotka-Volterra equations, or predator-prey equa-
tions, which are well-known in the literature.

The system is defined as follows: {
ẋ = 3x− 3xy
ẏ = xy − y (2)

which produces cyclic trajectories around the equilibrium point (1, 1) dependent on the initial
state.

We are interested to see how this nonlinear dynamics plays with a nonlinear guard, whose
boundary is: √

(x− 1)
2

+ (y − 1)
2

= 0.15 (3)

which is a circle of radius 0.15 around the equilibrium.
By choosing an initial state I = (1.3, 1.0) the cycle has a period of approximately 3.64 time

units. The trajectory of the Lotka–Volterra system trajectory is almost tangent (externally) to
the guard circle. Hence, small variations in the width of the initial set would put the trajectory
partially within the guard. Consequently we are interested in evaluating the time spent within
the circle by introducing a continuous counter variable called cnt.

The corresponding hybrid automaton is used to model the system:

• Continuous variables: x, y and cnt;

• Locations: outside and inside;

• Dynamics: those from Eq. 2 for x, y in both locations, and

˙cnt =

{
0, in outside
1, in inside

(4)

• Guards: {
(x−Qx)

2
+ (y −Qy)

2 ≤ R2 from outside to inside

(x−Qx)
2

+ (y −Qy)
2 ≥ R2 from inside to outside

(5)

• Invariants: the complement of the corresponding guards (i.e., transitions are urgent);

• Resets: none, i.e., the identity for both transitions.

3.5.2 Analysis

We want to start the system from I = (1.3± ε, 1.0), with ε = 0.008, and evolve it for T = 3.64
time units. Since the original system was close to tangency, by enlarging the initial set we
expect to produce different sequences of discrete events due to the distinction between crossing
and not crossing, and possibly by distinguishing the crossing sets based on the different crossing
times.

The following two properties must be verified:

1. At least one final set must not cross the guard, and at least one final set must cross it
twice by entering and exiting the reference circle;

2. cnt < 0.2 holds for all final sets.
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Table 5: Results of LOVO20 in terms of computation time, area and cntmax.

tool computation time in [s] area cntmax

Ariadne 3.9 0.052 0.18

CORA 12 0.0025 0.2

DynIbex 10 7.6e−5 0.132

Flow* − − −
Isabelle/HOL − − −
JuliaReach 7.1 0.0022 0.182

3.5.3 Evaluation

In terms of metrics, it is required to supply the following:

1. The execution time for computing the reachable set and checking the properties;

2. The area x× y of the box hull enclosing all the final sets;

3. The maximum of the cnt value obtained from all the final sets.

In addition, a figure showing the reachable set along with the circular guard shall be provided.
The axes are [0.6, 1.4]× [0.6, 1.4].

3.5.4 Results

This benchmark produced polarizing results: those tools that could handle it easily with good
performance, and those that were not able to handle the hybrid nature of the problem. Table 5
gives the timing/quality results, while Fig. 5 shows the graphical output. A future improvement
could be to focus on the section of the figure that displays the crossing and the subsequent
trajectories.

Settings for Ariadne. A TaylorPicardIntegrator is used with a maximum spacial error of
1e− 5. The maximum step size is 0.09.

Settings for CORA. We use the approach in [33] to calculate the intersections with the non-
linear guard set. For continuous reachability we apply the conservative linearization approach
[9] with time step size of 0.005 and a zonotope order of 20 for all modes.

Settings for DynIbex. The library DynIbex does not support hybrid systems natively.
However, based on constraint programming, event detection can be implemented and hybrid
systems can be simulated. Reachability analysis is carried out with an error tolerance of 10−12

using an explicit Runge-Kutta method of order 4 (RK4 method). No splitting of the initial
state has been performed.

Settings for Flow*. Since Flow* does not support urgent discrete transitions in hybrid
systems, we skip the test on this benchmark.

Settings for Isabelle/HOL. Isabelle/HOL does not support hybrid systems automatically.
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(a) Ariadne (b) CORA

(c) DynIbex (d) JuliaReach

Figure 5: Reachable set overapproximation for LOVO20, with x, y ∈ [0.6, 1.4], where the circular
guard is shown.

Settings for JuliaReach. The invariants and nonlinear guard are handled by suitable polyg-
onal under- and over-approximations of the ball (resp. their complements). We used nT = 7
and nQ = 1 and split the initial set into 5 boxes.

3.6 Space rendezvous benchmark (SPRE20)

3.6.1 Model

Spacecraft rendezvous is a perfect use case for formal verification of hybrid systems with nonlin-
ear dynamics since mission failure can cost lives and is extremely expensive. This benchmark
is taken from [20]. A version of this benchmark with linearized dynamics is verified in the
ARCH-COMP category Continuous and Hybrid Systems with Linear Continuous Dynamics.
The nonlinear dynamic equations describe the two-dimensional, planar motion of the space-
craft on an orbital plane towards a space station:
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ẋ = vx
ẏ = vy
v̇x = n2x+ 2nvy + µ

r2 −
µ
r3c

(r + x) + ux

mc

v̇y = n2y − 2nvx − µ
r3c
y +

uy

mc

The model consists of position (relative to the target) x, y [m], time t [min], as well as horizontal
and vertical velocity vx, vy [m / min]. The parameters are µ = 3.986× 1014 × 602 [m3 / min2],

r = 42164× 103 [m], mc = 500 [kg], n =
√

µ
r3 and rc =

√
(r + x)2 + y2.

The hybrid nature of this benchmark originates from a switched controller. In particular,
the modes are approaching (x ∈ [−1000,−100] [m]), rendezvous attempt (x ≥ −100 [m]), and
aborting. A transition to mode aborting occurs nondeterministically at t ∈ [120, 150] [min].
The linear feedback controllers for the different modes are defined as ( ux

uy ) = K1x for mode

approaching, and ( ux
uy ) = K2x for mode rendezvous attempt, where x =

(
x y vx vy

)T
is

the vector of system states. The feedback matrices Ki were determined with an LQR-approach
applied to the linearized system dynamics, which resulted in the following numerical values:

K1 =

(
−28.8287 0.1005 −1449.9754 0.0046
−0.087 −33.2562 0.00462 −1451.5013

)

K2 =

(
−288.0288 0.1312 −9614.9898 0
−0.1312 −288 0 −9614.9883

)
In the mode aborting, the system is uncontrolled ( ux

uy ) = ( 0
0 ).

3.6.2 Analysis

The spacecraft starts from the initial set x ∈ [−925,−875] [m], y ∈ [−425,−375] [m], vx = 0
[m/min] and vy = 0 [m/min]. For the considered time horizon of t ∈ [0, 200] [min], the following
specifications have to be satisfied:

• Line-of-sight: In mode rendezvous attempt, the spacecraft has to stay
inside line-of-sight cone L = {( xy ) | (x ≥ −100) ∧ (y ≥ x tan(30◦)) ∧ (−y ≥ x tan(30◦))}.

• Collision avoidance: In mode aborting, the spacecraft has to avoid a collision with the
target, which is modeled as a box B with 0.2m edge length and the center placed at the
origin.

• Velocity constraint: In mode rendezvous attempt, the absolute velocity has to stay

below 3.3 [m/min]:
√
v2x + v2y ≤ 3.3 [m/min].

Remark on velocity constraint In the original benchmark [20], the constraint on the
velocity was set to 0.05 m/s, but it can be shown (by a counterexample) that this constraint
cannot be satisfied. We therefore use the relaxed constraint 0.055 [m/s] = 3.3 [m/min].

3.6.3 Evaluation

The computation time for evolution and verification is provided. A figure is shown in the (x, y)
axes, with x ∈ [−1000, 200] and y ∈ [−450, 0].
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Table 6: Results of SPRE20 in terms of computation time.

tool computation time in [s]

Ariadne −
CORA 29

DynIbex 143

Flow* 8.9

Isabelle/HOL −
JuliaReach 20

3.6.4 Results

The results of the reachability computation for the spacecraft rendezvous model are given in
Figure 6 and Table 6, with the tool settings below. The introduction of a permissive guard
prevented completion for Ariadne: too many trajectories were generated and the absence of a
recombination strategy proved an issue. Therefore this benchmark requires proper support of
crossings in the presence of large sets, even if the crossing region is very simple from a geomet-
rical viewpoint. The hybrid nature of the problem again was an obstacle for Isabelle/HOL.

Settings for Ariadne. Ariadne was not able to complete evolution, due to the extremely
large number of trajectories produced from the nondeterministic guard: this is caused by the
lack of a recombination strategy. The maximum step size used was 1.0, essentially meaning that
we allowed the step size to vary widely along evolution: this choice turned out to be preferable
in terms of execution time. The maximum temporal order was 4 and the maximum spacial
error enforced for each step equal is 10−3. A splitting strategy for the initial set was used; the
strategy compare the radius of the set with a reference value of 12.0, in order to split the first
two dimensions once and yield a total of 4 initial subsets.

Settings for CORA. CORA was run with a time step size of 0.2 [min] for the modes
approaching and aborting, and with a time step size of 0.05 [min] for mode rendezvous attempt.
The intersections with the guard sets are calculated with constrained zonotopes [39], and the
intersection is then enclosed with a zonotope bundle [8]. In order to find suitable orthogonal
directions for the enclosure principal component analysis is applied.

Settings for DynIbex. The library DynIbex does not support hybrid systems natively.
However, based on constraint programming, event detection can be implemented and hybrid
systems can be simulated. Maximum zonotope order is set to 10, reachability analysis is carried
out with an error tolerance of 10−6 using an explicit Runge-Kutta method of order 3 (Kutta’s
method). No splitting of the initial state has been performed.

Settings for Flow*. The computation setting for Flow* is given as follows. For the mode
approaching, the time stepsize is 0.2 and the TM order is 4. For the mode rendezvous attempt,
we use a smaller time stepsize which is 0.02, and also a lower TM order which is 3. For the last
mode, we use the stepsize 0.1, the TM order 3 and track the remainder symbolically every 200
steps. Besides, the cutoff threshold is 10−7 in all modes.
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(a) CORA (b) DynIbex

(c) Flow* (d) JuliaReach

Figure 6: Reachable set of the spacecraft position in the x-y-plane for SPRE20. CORA, Is-
abelle/HOL, and DynIbex use different colors to encode different modes of the hybrid system.

Settings for Isabelle/HOL. Isabelle/HOL does not support hybrid systems automatically.

Settings for JuliaReach. We used nQ = 1 and nT = 5. The transition to the aborting
mode is handled by clustering the flowpipe into 29 boxes.

4 Conclusion and Outlook

This year, the competition confirmed the same six participants from 2019. This gave us the
opportunity to raise the bar of the benchmarks, by introducing two new systems (one in the
continuous space, the other in the hybrid space) and by increasing the difficulty of three of the
existing systems.
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The new benchmarks were the production-destruction system (PRDE20) and the Lotka-
Volterra system with tangential crossing (LOVO20). The first one was handled easily by all
tools, with significantly different quality results. For the next year, we aim at making results
better comparable, possibly by setting a target volume to be reached. LOVO20 turned out to
be problematic where handling tangential crossings was not supported in the tool; tools that
handled it were able to reach completion in a short time. We think that the benchmark is
interesting, but the complexity could be increased next year. Again, a target area could also
be considered as an objective.

Regarding the variation of the existing benchmarks, the coupled Van der Pol oscillator
(CVDP20) turned out to be a challenge for most competitors, in some cases preventing the
satisfaction of the specification. This was an interesting experiment and we shall iterate on
it next year, to evaluate improvements of tools. The quadrotor system (QUAD20), on the
other hand, did not show any interesting property after the extension to different inputs. Since
the benchmark is easily handled by all tools, we might consider its exclusion from next year’s
competition: while it is high-dimensional and potentially highly nonlinear, it does not partic-
ularly exploit such nonlinearity. The steady-state behavior at the end of the evolution was a
good benchmark for the stability of the integration scheme, but it has been supplanted by the
Production-Destruction benchmark this year.

The extension of the Space Rendezvous benchmark to a non-urgent transition proved to be
unmanageable by tools that did not perform a set recombination strategy, but was reasonably
handled otherwise. The benchmark therefore remains an interesting challenge peculiar to the
hybrid domain.

Finally, the Laub-Loomis benchmark was kept the same as last year due to its difficulty.
Tools showed improvements, being all able to return results with a satisfactory quality. For the
next year, an extension is therefore envisioned.

We care to mention that, triggered by the participation in this competition, individual tools
made progress:

• A new set representation called sparse polynomial zonotopes [32] was implemented in
CORA which enables the faster and more accurate computation of the reachable set for
nonlinear systems. Furthermore, CORA now supports hybrid systems with nonlinear
guard sets [33].

• Most of the fundamental data structures and functions in Flow* are re-implemented in
a more efficient way and exposed as a C++ API. The purpose of the re-implementation
is not only the improvement of the code organization and efficiency, but also the ease of
extension. In the near future, the tool will be extended in the following two directions: (a)
as a core component in a verification tool for nonlinear neural network controlled systems.
The effectiveness of Flow* in the verification of AI systems has already been shown in
[28, 29]. (b) easier to be tailored to build into embedded systems. We have successfully
run Flow* on a mobile device to control a self-driving robot.

• JuliaReach has a new user API, ReachabilityAnalysis.jl, with many improved features
such as more performant code, a simplified interface, and new algorithms for continuous
and hybrid systems. Moreover, we have incorporated new convex approximation methods
for Taylor models for enhanced precision. We also added support for multi-threaded
parallelism.
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Summarizing, the new benchmarks and extensions were interesting by way of touching
critical aspects of continuous/hybrid evolution that were not considered in the previous years.
We believe that a benchmark suite with representative problems is of the utmost importance,
in order to stimulate meaningful progress of all the participating tools. Consequently, for the
next year we aim at refining the existing suite to advance in this direction.
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