
EasyChair Preprint

№ 521

From Parametric Trace Slicing to Rule Systems

Giles Reger and David Rydeheard

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 23, 2018

From Parametric Trace Slicing to Rule Systems

Giles Reger? and David Rydeheard

University of Manchester, Manchester, UK

Abstract. Parametric runtime verification is the process of verifying properties
of execution traces of (data carrying) events produced by a running system. This
paper continues our work exploring the relationship between specification tech-
niques for parametric runtime verification. Here we consider the correspondence
between trace-slicing automata-based approaches and rule-systems. The main
contribution is a translation from quantified automata to rule-systems, which has
been implemented in SCALA. This then allows us to highlight the key differences
in how the two formalisms handle data, an important step in our wider effort
to understand the correspondence between different specification languages for
parametric runtime verification.

1 Introduction
Runtime verification [7, 14, 20] is the process of checking properties of execution traces
produced by running a computational system. An execution trace is a finite sequence
of events generated by the computation. In many applications, events carry data values
– the so-called parametric, or first-order, case of runtime verification. To apply runtime
verification, we need to provide (a) a specification language for describing properties of
execution traces, and (b) a mechanism for checking these formally-defined properties
during execution, i.e. a procedure for generating monitors from specifications. Many
different specification languages for runtime verification have been proposed and almost
every new development introduces its own specification language.

This work furthers our broader goal of organising and understanding the space of
specification languages for runtime verification. As explained later, we see little reuse
of specification languages in runtime verification and little is understood about the rela-
tionship between the different languages that have been introduced. We believe that the
field can be considerably improved by a better understanding of this space.

This paper specifically explores the relationship between two particular approaches
to specification for parametric runtime verification: parametric trace slicing and rule
systems. We begin by describing the general setting we are working in (Section 2) be-
fore introducing these two languages (Section 3). The main contribution of the paper
is a translation from specifications using parametric trace slicing to those using rules
(Section 4). We define the translation, provide some examples, and prove its correct-
ness. The translation has been implemented and validated in SCALA, available online at
https://github.com/selig/qea_to_rules. A further contribution is then
a discussion of the things we have learnt about the relationship between these two lan-
guages via the development of the translation (Section 5). We conclude in Section 6.
? The work of this author is supported by COST Action ARVI IC1402, supported by COST

(European Cooperation in Science and Technology).

2 Setting

In this paper we focus on the runtime verification problem at a level of abstraction where
we assume that a run of a system has been abstracted in terms of a finite sequence of
events via some instrumentation method. Such techniques are described elsewhere [7].
Defining The Runtime Verification Problem. We begin by defining events, traces,
and properties. We assume disjoint sets of event names Σ, variables Var , and values
Val . We do not directly consider sorts (e.g. variable x being an integer) as this is not
essential to this work, but assume events are well-sorted where it matters.

Definition 1 (Events, Traces, and Properties). An event is a pair of an event name e
and a list of parameters (variables or values) v1, . . . , vn, usually written e(v1, . . . , vn).
An event is ground if it does not contain variables. A trace is a finite sequence of ground
events. A property is a (possibly infinite) set of traces.

We use x, y, z for variables and a, b, c or numbers for values (unless context requires
otherwise), τ for traces and P for properties. For example, login(x, 42) is an event
where x is a variable and 42 a value; the finite sequence login(a, 42).logout(a) is
a trace; and the set {login(a, 42).logout(a), login(b, 42).logout(b)} is a property.
We write a,b for events where their structure is unimportant.

We say that a property is propositional if all events in all traces have empty lists
of parameters, otherwise it is parametric (or first-order). A specification language pro-
vides a language for writing specifications ϕ and provides a semantics that defines the
property P(ϕ) that ϕ denotes. A specification language is propositional if it can only
describe specifications denoting propositional properties, and parametric otherwise.

Definition 2 (The Runtime Verification Problem). Given a trace τ and a specifica-
tion ϕ decide whether τ ∈ P(ϕ).

Again, we can talk of the propositional and parametric versions of this problem.
The propositional version should be highly familiar - typical specification languages
include automata, regular expressions, and linear temporal logic, for which procedures
for efficiently deciding the above problem are well known.

There are four main runtime verification approaches that handle the parametric case
(see [19] for an overview). Parametric trace slicing [3, 11, 22] separates the issue of
quantification from trace-checking using a notion of projection. First-order extensions
to temporal logic [8, 9, 13, 21, 27] rely on the standard logical treatment of quantifica-
tion, introducing (somewhat complex) monitor construction techniques to handle this.
Rule systems [2, 5, 16] and stream processing [12, 10, 15] do not have inherent notions
of quantification. In rule systems values are stored as rule instances (facts) and rules
dictate which instances should be added or removed. Stream processing defines sets of
stream operators that operate over streams to produce new streams.

We note that there are variations of the above problem e.g. deciding whether τ.τ ′ ∈
P(ϕ) for all possible extensions τ ′ (which acknowledges that finite traces may be pre-
fixes of some infinite trace), or considering a property as a function from traces to some
non-boolean verdict domain. In general, the specification languages for such formula-
tions remain the same and much of our work can translate to these variations.

Our Research Question. Given this large space of specification languages our funda-
mental research question is as follows:

What are the fundamental differences between specification languages for describing
parametric properties for runtime verification and how do these differences impact the
expressiveness and efficiency of the runtime verification process.

Below we discuss (i) why we care about this question, and (ii) what our general
approach to answering it is.

Why Do We Care? We outline the main motivations behind this research question:

– Reusable research. The four main approaches to parametric runtime verification
described above have been explored in relative isolation. Developments in one area
cannot be easily transferred to another. For example, notions of monitorability and
complexity results remain tied to their particular language.

– Reusable tools, benchmarks, and case studies. Similarly, tools for one language
cannot be directly used for another and related experimental data is tied to that
tool. This leads to separate ecosystems where runtime verification solutions are
developed in isolation.

– Balancing Expressiveness and Efficiency. Some approaches focus on the expres-
siveness of the language before the efficiency of the monitoring algorithm, and other
approaches have the inverse focus. A key motivation of this work is to see where
we can combine the best parts of different approaches. For example, by identifying
fragments of an expressive language that can be translated into a language with a
more efficient monitoring algorithm.

– Evaluation. In general, it is hard to compare approaches without a good understand-
ing of how they are related. The Runtime Verification competition [6, 25] has relied
on a manual translation of specifications between languages, which has been prob-
lematic in various ways. Ideally, a common language would be used. However, the
close links between language and the efficiency of the monitoring algorithm mean
that translations would be required from this common language.

Our Approach. We are exploring this broad research question in two complementary
directions. Firstly, we are taking an example-led approach where we explore concrete
examples of specifications in different languages and attempt to infer commonalities,
differences, and general relationships. This is ongoing and has begun to highlight con-
ceptual differences between approaches [17–19]. Secondly, we are working towards a
general framework for formally exploring the relationship between specification lan-
guages. We have chosen to build this via a series of translations between approaches.
Our previous work [26] introduced a translation from a first-order temporal logic to a
language using parametric trace slicing; this current work introduces a translation from
parametric trace slicing to rule systems; and we are currently exploring a translation
from rule systems to a first-order temporal logic. We believe that these translations can
provide a pragmatic way to move between specification languages and highlight the
main differences between languages.

3 Two Languages
In this section we introduce two specification languages for parametric runtime verifi-
cation – one based on parametric trace slicing and the other on rule systems. Examples
in both languages are given at the end of the section.

Preliminaries. Let an event alphabet A(Z) be a set of events using variables in Z e.g.
A({x}) might be {e(x)} or {e(x), f(x, x)} but not {e(x), f(x, y)}. A map is a partial
function with finite domain. We write ⊥ for the empty map and dom(θ) for the domain
of map θ. Given two maps θ1 and θ2 we define the following operations:

consistent(θ1, θ2) iff (∀x) x ∈ (dom(θ1) ∩ dom(θ2))→ θ1(x) = θ2(x)
θ1 v θ2 iff dom(θ1) ⊆ dom(θ2) and consistent(θ1, θ2)
(θ1 † θ2)(x) = v iff θ2(x) = v if x ∈ dom(θ2) otherwise θ1(x) = v

A valuation is a map from variables to values. We use θ and σ for valuations. Valuations
can be applied to structures containing variables to replace those variables.

The sets Guard(Z) and Assign(Z) contain (implicitly well-sorted) guards (boolean
expressions) and assignments over the set of variables Z. Such guards denote predicates
on valuations with domains inZ, for example Guard({x, y}) contains expressions such
as x = y and x ≤ 2. Assignments are finite sequences of the form x := t where x ∈ Z
is a variable and t is an expression over values and variables in Z that can be evaluated
with respect to a valuation. We assume a true guard true and an identity assignment id.

Finally, we introduce matching. Given finite parameter sequences v and w, let the
predicate matches(v, w) hold if there is a valuation θ such that θ(v) = θ(w). Let
match(v, w) be the minimal such valuation with respect to the sub-map relation v
(if such a valuation exists, undefined otherwise). Let match(v, w, Z) be the largest val-
uation θ such that θ v match(v, w) and dom(θ) ⊆ Z i.e. the matching valuation is
restricted to Z. We lift all definitions to events by checking equality of event names.
3.1 Parametric Trace Slicing with Quantified Event Automata
Parametric trace slicing [11] was introduced as a technique that transforms a monitor-
ing problem involving quantification over finite domains into a propositional one. The
idea is to take each valuation of the quantified variables and consider the specification
grounded with that valuation for the trace projected with respect to the valuation. The
benefit of this approach is that projection can lead to efficient indexing techniques.

Quantified event automata (QEA) [3] is a slicing-based formalism that generalises
previous work on parametric trace slicing. In this work, we consider a restricted form
of QEA that does not allow existential quantification (see the discussion in Section 5).

Definition 3 (Quantified Event Automata). A quantified event automaton is a tuple
〈X,Q,A(X ∪ Y), δ,F , q0, σ0〉 where X is a finite set of universally quantified vari-
ables, Q is a finite set of states,A(X ∪Y) is an event alphabet, δ ⊆ (Q×A(X ∪Y)×
Guard(Y) × Assign(Y) × Q) is a transition relation, F ⊆ Q is a set of final states,
q0 ∈ Q is an initial state, and σ0 is an initial valuation with dom(σ0) = Y .

The variables Y are implicitly unquantified and are to be used in guards and assign-
ments. An advantage of the parametric trace slicing approach is that the quantified and
unquantified parts of the specification can be treated separately. The quantified part is
dealt with by trace slicing and the unquantified part is dealt with by the automaton.

Semantics. We now introduce a small-step semantics for QEA. We would normally
introduce a big-step semantics in terms of the trace slicing operator and use this to
motivate the (more operational) small-step presentation. But space does not allow this
here and we refer the reader to other texts for this [3, 23]. In the following we assume a
fixed QEA of interest and refer to its components e.g. the set of quantified variables X .

Let a monitoring state be a map from valuations θ with dom(θ) ⊆ X to sets
of configurations, which are pairs consisting of states ∈ Q and valuations σ with
dom(σ) = Y . The small-step semantics defines a construction that extends a moni-
toring state given a ground event. This construction is then lifted to traces.

Next Configurations. Given a set of configurations P , an event a, and a valuation θ
(with dom(θ) = X), the set next(P,a, θ) of next configurations is defined as the small-
est set of configurations such that{
(q′, α(σ †match(a,b, Y))) | ∃(q,b, γ, α, q

′) ∈ δ : 〈q, σ〉 ∈ P ∧matches(a,b)∧
γ(σ †match(a,b, Y)) ∧match(a,b, X) v θ

}
or P if this set is empty i.e. if no transitions can be taken then P is not updated. This
says that we take a transition if we match the event, satisfy the guard, and don’t capture
any new variables in X not already present in θ.

Relevance. We will update the configurations related to a valuation in the monitoring
state if the given event is relevant to that valuation. An event a is relevant to some
valuation θ if there is an event in the alphabet that matches it consistently with θ i.e.

relevant(θ,a)⇔ ∃b ∈ A(X ∪ Y) : matches(a,b) ∧match(a,b, X) v θ

Extensions. We will create a new valuation if matching the given event with an event in
the alphabet binds new quantified variables. The set of valuations extensions(θ,a) that
could extend an existing valuation θ given a new ground event a can be defined by:

from(a) = {θ | ∃b ∈ A(X ∪ Y) : matches(a,b) ∧ θ v match(a,b, X)}
extensions(θ,a) = {θ † θ′ | θ′ ∈ from(a) ∧ consistent(θ, θ′) ∧ θ′ 6= ⊥}

This constructs all valuations that can be built directly and then uses the consistent ones.

Construction. We put these together into the monitoring construction.

Definition 4 (Monitoring Construction). Given ground event a and monitoring state
M , let θ1, . . . , θm be a linearisation of the domain of M from largest to smallest wrt v
i.e. if θj @ θk then j > k and every element in the domain of M is present once in the
sequence, hence m = |M |. We define the monitoring state (a ∗M) = Nm where Nm
is iteratively defined as follows for i ∈ [1,m].

N0 = ⊥ Ni = Ni−1 † Addi †
{

[θi 7→ next(M(θi),a, θi)] if relevant(θi,a)
[θi 7→M(θi)] otherwise

where the additions are defined in terms of extensions not already present:

Addi = [(θ′ 7→ next(M(θi),a, θ
′)) | θ′ ∈ extensions(θi,a) ∧ θ′ /∈ dom(Ni−1)]

and next is a function computing the next configurations given a valuation.

This construction iterates over valuations (of quantified variables) from largest to
smallest (wrt v). For each valuation it will add any extensions that do not already exist
and then update the configuration(s) mapped to by the existing valuation. Let us now
consider the aspects that have not yet been defined.

Maximality. The order of traversal in Definition 4 is important as it preserves the prin-
ciple of maximality. This is the requirement that when we add a new valuation we want
to extend the most informative or maximal valuation as this will be associated with all
configurations relevant to the new valuation. Given a set of valuationsΘ and a valuation
θ let maximal(Θ, θ) = θM be the maximal valuation defined as:

θM ∈ Θ ∧ θM v θ ∧ ∀θ′ ∈ Θ : θ′ v θ ⇒ θM 6@ θ′

This relies on the fact that dom(M) is closed under least-upper bounds. In Definition 4,
when a valuation θ is introduced its initial set of configurations is taken as those be-
longing to maximal(dom(M), θ) as otherwise it will already have been added. This
principle is important as it makes the later translation complicated.

Quantification Domain. It may not be obvious from the small-step semantics but this
semantics ensures that the domain of the monitoring state captures the full cross-product
of the quantification domains of X . The domain of variable x ∈ X is given as

{match(a,b)(x) | a ∈ τ ∧ b ∈ A(X ∪ Y) ∧matches(a,b) ∧ b = e(. . . , x, . . .)}

i.e. the set of values in events in the trace that match with events in the alphabet.

The Property Defined by a QEA. Let Mτ = τ ∗ [⊥ 7→ {(q0, σ0(Y))}] be the above
construction transitively applied to the initial monitoring state. The property defined by
the QEA is the set of traces τ such that ∀θ ∈ dom(Mτ) : dom(θ) = X ⇒ ∀(q, σ) ∈
Mτ (θ) : q ∈ F i.e. all total valuations are only mapped to final states.

3.2 A Rule-Based Approach

We now introduce an approach first introduced in RULER [2] that uses a system of rules
to compute a verdict. Our notion of a rule system here could be considered the core of
the system introduced in [2] i.e. the extensions in [2] are either trivial or can be defined
in terms of this core. Hence, this formulation is representative of RULER.

Let R be a set of rule names. A term is a variable, value, or a function over terms
(e.g. x + 1). A rule expression is a rule name r applied to a list of terms and is pure if
these terms are function-free. A premise is an event, pure rule expression or guard, or a
negation of any of these (we use ! for negation). A rule term is of the form lhs → rhs
where lhs is a list of premises and rhs is a list of rule expressions. A rule definition is
of the form r(x){body} where r is a rule name, x is a list of variables and body is a set
of rule terms. We call r(x){body} a rule definition for r(x). Finally, A fact is a finite
set of rule instances. A rule instance is a pair 〈r, θ〉 where r is a rule name and θ is a
valuation. We now define a rule system.

Definition 5 (Rule System). A rule system is a tuple 〈D,B, I〉 where D is a finite set
of rule definitions, B is a finite set of bad rule expressions and I is an initial fact.

A rule term lhs → rhs is well-formed if when the first occurrence of a variable in
lhs is under a negation then this is its only occurrence in the rule term. A rule definition
r(x){body} is well-formed if every rhs in body only contains variables in x or the
corresponding lhs . A rule system is well-formed if (i) all rule terms are well formed,
(ii) there is at most one rule definition for each r(x), and (iii) every rule expression
used in rule terms has a corresponding definition. A rule instance 〈r, θ〉 is well-formed
for a rule system if there is a rule definition for r(x) such that dom(θ) = x. Below we
assume a well-formed rule system of interest and will refer to its components directly.

The semantics of rule systems can be given in terms of a rewrite relationship on
facts. Given a fact and an event we (i) find the set of rule instances in the fact that fire,
and then (ii) update the fact with respect to these rule instances.

An extended fact is a finite set of rule instances and (ground) events. We define a
firing function for extended fact Γ , valuation θ and premise as follows:

fire(Γ, θ,b) = θ †match(a, θ(b)) if a ∈ Γ ∧matches(a, θ(b))
fire(Γ, θ, r(x)) = θ †match(v, θ(x)) if r(v) ∈ Γ ∧matches(v, θ(x))
fire(Γ, θ, γ) = θ if γ(θ)
fire(Γ, θ, !t) = θ if fire(Γ, θ, t) = ⊥
fire(Γ, θ, t) = ⊥ otherwise

This computes the extension of θ that satisfies the premise using the given extended
fact. The first two lines match against events and rule expressions, the third line checks
guards, the fourth line deals with negation, and the last line handles the case where the
constraints of previous lines do not hold. This is lifted to lists of premises as follows:

fire(Γ, θ, ε) = θ fire(Γ, θ, prems) = fire(Γ, fire(Γ, θ, head(prems)), tail(prems))

We say that a rule instance 〈r, θ〉 fires in an extended fact Γ if fire(Γ, θ, lhs) 6= ⊥ where
lhs → rhs is in the body of the rule definition for r(dom(θ)).

Given a rule system and extended fact Γ , we define the set of ground rule expres-
sions that result from a rule instance 〈r, θ〉 firing as follows:

fired(〈r, θ〉, Γ) = {θ′(rhs) | lhs → rhs ∈ r(dom(θ)) ∧ θ′ = fire(Γ, θ, lhs)}

where we write lhs → rhs ∈ r(dom(θ)) to mean that lhs → rhs is in the body of
the rule definition of r(dom(θ)). As θ′(rhs) is now ground we evaluate all functions to
ensure that it is also pure e.g. [x 7→ 1](s(x+ 1)) = s(1 + 1) = s(2).

We define a rewrite relation ∆ a→ ∆′ for facts ∆ and ∆′ and ground event a. Let
∆′ = (∆NF \∆R)∪∆F where ∆NF is the set of rule instances in ∆ that do not fire in
∆ ∪ {a} and ∆F and ∆R are the smallest facts such that:

〈r′, [x 7→ v]〉 ∈ ∆F if 〈r, θ〉 fires in ∆ ∪ {a} and r′(v) ∈ fired(〈r, θ〉, ∆ ∪ {a})
〈r′, [x 7→ v]〉 ∈ ∆R if 〈r, θ〉 fires in ∆ ∪ {a} and !r′(v) ∈ fired(〈r, θ〉, ∆ ∪ {a})

where r(x) is defined in D. This defines ∆F as the new rule instances after rules are
fired and ∆R as the rule instances that need to be removed after rules are fired.

This rewrite relation is transitively extended to traces to produce a final fact I τ→ ∆,
where I is the initial fact. This final fact is accepting if it does not contain a rule instance
〈r, θ〉 such that r(dom(θ)) ∈ B, the set of bad rule expressions.

1 2

34

∀c∀i
create(c, i)

update(c)

use(i)

1 2 3

∀s∀r
send(s)

ack(r, s) send(s)

1 2 3

4

∀i σ0(c) = 0

list(i,min)

bid(i, a) if a > c do c := a

sell(i) if c ≥ min

list(i,),
bid(i, a) if a ≤ c
sell(i) if c < min list(i,),

bid(i, a)

Fig. 1. QEA for (i) the UnsafeIterator property (top left), (ii) the AuctionBidding property (right),
and (iii) the Broadcast property (bottom left).

3.3 Examples

We now introduce three example properties and specify them in the two languages.
We will later use these to motivate, demonstrate, and discuss the translation. The three
properties are:

– The UnsafeIterator property that an iterator i created from a collection c cannot be
used after c is updated.

– The AuctionBidding property that after an item i is listed on an auction site with a
reserve price min it cannot be relisted, all bids must be strictly increasing, and it
can only be sold once this min price has been reached.

– The Broadcast property that for every sender s and receiver r, after s sends a mes-
sage it should wait for an acknowledgement from r before sending again. Receivers
are identified exactly as objects that acknowledge messages.

These are formalised as QEA in Figure 1 and as rule systems in Figure 2. One case that
may require some explanation is the rule system for the Broadcast property. This needs
to build up knowledge about the set of sender and receiver objects explicitly (whilst in
trace slicing this is done implicitly), relying on the knowledge that the set of receivers
must be fixed once a sender sends for the second time.

4 Translating Quantified Event Automata to Rule Systems

We now show how to produce a rule system from a QEA. This will consist of three
translations on the QEA until it is in a form where we can apply a local translation
of each state to a rule definition. The translation has been implemented in SCALA (see
https://github.com/selig/qea_to_rules).

4.1 An equivalent representation with labelled states

We introduce an annotation of QEA that replaces states with labelled states. The idea
is that a state will be labelled with the set of variables that are seen on all paths to that
state. Let 〈q, S〉 be a labelled state where q is a state and S a (possibly empty) set of
variables. Given a set of states Q and a set of variables X let LS = Q × 2X be the
(finite) set of labelled states.

〈 Start{ create(c, i), !Unsafe(c, i)→ Created(c, i), Start }
Created(c, i){ update(c)→ Unsafe(c, i) }
Unsafe(c, i){ use(i)→ Fail }

, {Fail}, 〈Start, []〉

〉

〈
Start { list(i,min), !Live(i,m), !Sold(i)→ Live(i,min, 0), Start }

Live(i,m, c)


bid(i, a), a > c→ Live(i, a)
sell(i), c ≥ m → Sold(i)
list(i,)→ Fail
bid(i, a), a ≤ c→ Fail
sell(i), c < m → Fail


Sold(i)

{
list(i,)→ Fail
bid(i, a)→ Fail

}
, {Fail}, 〈Start, []〉

〉

〈
Start


send(s), !S(s)→ S(s), Start
send(s), !S(s), R(r)→ Unsafe(r, s), Start
send(s), S(s)→ Fixed
ack(r, s), !R(r)→ R(r), Start


Fixed

{
ack(r, s), !R(r)→ Fail
send(s), !S(s),R(r)→ S(s),Unsafe(r, s),Fixed

}
S(s)

{
send(s),R(r)→ Unsafe(r, s), S(s)
ack(r, s′), !R(r), s 6= s′ → Unsafe(r, s), S(s)

}
Unsafe(r, s)

{
send(s)→ Fail
ack(r, s)→ empty

}
R(r) {}

,

{
Unsafe(r, s),
Fail

}
, 〈Start, []〉

〉

Fig. 2. Rule systems for (i) the UnsafeIterator property (top), (ii) the AuctionBidding property
(middle), and (iii) the Broadcast property (bottom). Assuming general rule definition Fail{}.

A QEA over labelled states is well-labelled if when 〈q2, S2〉 is reachable from
〈q1, S1〉 we have S1 ⊆ S2. The previous Broadcast QEA is not well-labelled as the
initial state would have an empty set of labels but there is an incoming transition us-
ing r and s. The equivalent well-labelled version of this (corresponding to the result of
the construction introduced next) is given in Figure 3 (top). We show how to construct
a well-labelled QEA defined over labelled states from a standard QEA. Given QEA
〈X,Q,A(X ∪ Y), δ,F , q0, σ0〉 we construct 〈X,LS,A(X ∪ Y), δ′,F ′, 〈q0, {}〉, σ0〉
where δ′ and F ′ are defined as the smallest sets satisfying the following:

(〈q, S〉, e(x), γ, α, 〈q′, S ∪ (x\Y)〉) ∈ δ′ if (q, e(x), γ, α, q′) ∈ δ
(〈q, S〉, e(x),¬(γ1 ∨ . . . ∨ γn), id, 〈q, S ∪ x\Y 〉) ∈ δ′ for e(x) ∈ A(X ∪ Y)

and all (q, e(x), γi, α, q
′) ∈ δ

〈q, S〉 ∈ F ′ if q ∈ F and S = X

where S ⊆ X . The second item requires explanation; this captures the case where no
transition can be taken and thus an implicit self-loop is performed as these transitions
may be between states with different captured variables. Note that if no transitions for

1, {} 2, {s}

3, {s}

1, {r, s}

2, {r, s}3, {r, s}
∀s∀r

send(s) ack(r, s)

ack(r, s)

send(s) ack(r, s)send(s)

send(s)

ack(r, s)

1, {} 2, {s}

3, {s}

1, {r, s}

2, {r, s}3, {r, s}
∀s∀r

send(s) ack(r, s)

ack(r, s), ack(r, x) if x 6= s

ack(r, s)send(s)send(s)

send(s)

ack(r, x) if x 6= s

ack(r, s)

Fig. 3. Well-labelled and domain-explicit versions of the Broadcast QEA.

e(x) exist then ¬(γ1 ∨ . . . γn) will be true . This may lead to unreachable states which
can be safely removed. A special case of this would be where a guard becomes false by
negating a true guard. Note that final states must have the set of quantified variables X
as their label. This fits with the observation that slicing only considers total valuations.

This resultant automaton over labelled states is equivalent to the original one as no
new paths to final states are introduced and none are removed. From now on we will
refer to QEA over labelled states as QEA if the labelling is clear from the context or
unimportant. Additionally, we will assume all QEA are well-labelled.

4.2 A domain-explicit form

We make the following observation about the Broadcast property. Consider the trace
send(1).ack(2, 3). After the first event the only (partial) valuation we can be aware
of is [s 7→ 1]. The second event extends the domain of r and requires us to consider
[s 7→ 1, r 7→ 2]. However, ack(2, 3) is not relevant to [s 7→ 1]. This will be problematic
for our translation as in the rule system the decision about whether to extend a valuation
must be made locally i.e. by making a transition. Here this can be resolved by adding
a transition (〈2, {s}〉, ack(r, x), x 6= s, 〈2, {r, s}〉), which is one of two transitions
added by the following construction as illustrated in Figure 3 (bottom). However, in
general, we may need to add many similar transitions to capture all possible valuation
extensions. We will now introduce an intermediate form that achieves this.

We introduce a conversion to domain-explicit QEA that will (i) ensure that ground
events that extend an evaluation will always correspond to a transition in the automaton,
but (ii) will also preserve the language of the QEA. To convert to domain-explicit form,
for each labelled state 〈q, S〉 and event e(x) ∈ A(X ∪ Y) where x ∩ (X/S) 6= ∅ (it
contains at least one new quantified variable) we add a set of transitions

(〈q, S〉, e(x[xi 7→ fresh(xi)]),
∧
x∈R

x 6= fresh(x), id, 〈q, S ∪R〉)

where R is a non-empty subset of S ∩ (x/Y) and fresh(x) produces a consistent fresh
variable if x ∈ R and x otherwise. These events are exactly those that will bind new
quantified variables without needing to match the values of existing quantified variables.
If x and S are disjoint then e(z) = e(x). Otherwise, a new event is created replacing
one or more known quantified variables (in S) by a fresh unquantified variable along
with a guard saying that the two are not equal.

The QEA resulting from this translation is well-labelled and equivalent (in terms of
language accepted) to the original QEA. Equivalence is due to the fact that transitions
are only created between copies of the same state, therefore no paths to final states are
added or removed. Additionally, due to the skipping completion of QEA, adding events
to the alphabet has no other side-effects.

4.3 A fresh-variable form

Our final translation on the QEA is to ensure that we can transform transitions in a QEA
directly into a rule definition. Consider the transition 〈〈2, {i}〉, bid(i, a), if a > c, c :=
a, 〈2, {i}〉〉 from the labelled QEA for the AuctionBidding property (see preprint). We
might try and write the following rule definition for this transition where we must in-
clude the set of unquantified variables Y in the parameters of the rule definition:

r2(i,min, c, a){bid(i, a), a > c→ r2(i,min, a, a)}

This is problematic as bid(i, a) will try and match this a with the a in the parameter
list. To avoid this, we must replace instances of unquantified variables in transitions with
fresh local versions. For example, this tranisition would become 〈〈2, {i}〉, bid(i, b), if b >
c, a := b; c := a, 〈2, {i}〉〉 i.e. we replace a by b and then set a := b in the assignment.

To perform this translation we replace each transition 〈〈q, S〉, e(x), γ, α, 〈q′, S′〉〉 ∈
δ with the new transition for yi ∈ x ∩ Y and fresh zi:

〈〈q, S〉, [yi 7→ zi](e(x)), [yi 7→ zi](γ), (zi = yi);α, 〈q′, S′〉〉

The resultant QEA is clearly equivalent as all paths remain the same.

4.4 The translation

Given a domain-explicit labelled QEA 〈X,LS,A(X ∪ Y), δ,F, 〈q0, {}〉, σ0〉 we con-
struct a set of rule definitions RD = {rq(S, Y) | 〈q, S〉 ∈ LS}. The body for each
rule definition is constructed by translating each transition starting at that state. The im-
portant step is knowing how to translate each transition based on whether the transition
extends the label of quantified variables or not.

(i) Transitions with the same label. We first consider simple transitions that do not bind
any new quantified variables. Let (〈q, S〉, e(x), γ, α, 〈q′, S〉) ∈ δ be such a transition.
We introduce the following rule term for this transition

e(x), γ → rq′(S, α(Y))

where we write α(Y) for the expansion of assignment α to Y e.g. (x = y+1){x, y} =
y + 1, y. We shall call rule terms of this form kind (i).

(ii) Transitions extending the label. Recall that the small-step semantics for QEA de-
pended on the principle of maximality. We need to reproduce this in the constructed
rule system. The notion of maximality applies when a valuation is extended with in-
formation about new quantified variables and the extension is required only if there
is no larger consistent valuation. For transition (〈q, S〉, e(x), γ, α, 〈q′, S′〉) ∈ δ where
S ⊂ S′ we introduce the following rule term

e(x), γ, !r1(S1, Y1), . . . , !rn(Sn, Yn)→ rq′(S
′, α(Y)), rq(S, Y)

for ri(Si, Y) ∈ RD, S ⊂ Si, and fresh copies Yi of Y . We treat assignment α as
the valuation given by applying it to the identity valuation. We shall call rule terms
of this form kind (ii). Two features of this rule term should be explained. Firstly,
!r1(S1), . . . , !rn(Sn) captures maximality as it states that there is no rule instance with
a valuation larger than and consistent with the current one. Secondly, the two rule ex-
pressions on the right serve two separate purposes: rq′(S′) is the new valuation in its
new state and rq(S) is re-added as the initial valuation should stay in the current state.

As an example, the domain-explicit labelled QEA for the Broadcast property is
translated to the following set of rule definitions (generated by our tool).

r1

{
ack(r, s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s)→ r1, r1(r, s)
send(s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s)→ r1, r2(s)

}
r1(r, s)

{
send(s)→ r2(r, s)

}
r2(s)

 send(s)→ r3(s)
ack(r, sp), s 6= sp, !r1(r, s), !r2(r, s), !r3(r, s)→ r2(s), r2(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s)→ r2(s), r1(r, s)


r2(r, s)

{
send(s)→ r3(r, s)
ack(r, s)→ r1(r, s)

}
r3(s)

{
ack(r, sp), s 6= sp, !r1(r, s), !r2(r, s), !r3(r, s)→ r3(s), r3(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s)→ r3(s), r3(r, s)

}
r3(r, s) {}

We have now described how to produce a rule body for each rule definition by trans-
lating the transitions as described above. A rule system is the set D of rule definitions
for each state in LS, the bad rule expressions B = {r(S) | 〈q, S〉 /∈ F} and the initial
state = {〈rq0 , σ0〉}.

We can now state our theorem that the translation is correct i.e. it preserves the
property defined by the QEA.

Theorem 1. Given a domain-explicit Q, let RS be the rule system given by the above
translation. For monitoring state Mτ and rule state ∆τ if

Mτ = τ ∗ [[] 7→ {〈q0, σ0(Y)〉}] and {〈rq0 , σ0〉}
τ→ ∆τ

then for any valuation θ

Mτ (θ) = {〈q, σ〉 | 〈rq, θ ∪ σ ∪ σ′〉 ∈ ∆τ ∧ dom(σ′) ∩ Y = ∅}

The proof can be found in the appendix. The translation is decidable; any QEA of the
form given in Section 3.1 can be translated to a rule system (which is neither unique nor
minimal; no good notion of minimality exists). The size of the resulting rule system is
potentially O(|Q| × 2|X|) due to the well-labelled translation introducing new states.

1 2 3 4∀v∃p∀c
member(v, p) candidate(c, p) rank(v, c, r)

Fig. 4. A QEA for the CandidateSelection property taken from [3].

5 Discussion and Related Work

In this section we explore what we have learned about the relationship between the two
languages introduced in Section 3 by the development of the previous translation. We
consider the expressiveness of the languages, the efficiency of monitoring, how data is
treated differently in each language, and the generality of our results.

Expressiveness. Our translation shows that rule systems are at least as expressive as
the form of QEA presented here (i.e. without existential quantification, see below). The
remaining questions are whether they are strictly more expressive and what effect the
choice of presentation for QEA has had on this translation. The first question can be
answered positively. Our previous work [17] has given an example of a property that
cannot be captured via trace slicing. This was a lock-ordering inspired property but the
general form relied on second-order quantification to define a notion of reachability. For
the second question we consider the differences in the presentation of QEA with [3].

– Existential Quantification. Existential quantification can be useful in certain cases
but we do not yet know how to extend the translation to include it generally. For
example, it is very difficult to write a rule system for the QEA given in Figure 4. It
seems that it will be necessary to extend rule systems with additional support either
via explicit quantification or a specialised notion of non-determinism that splits the
state into multiple states where only one needs to be accepting. This property is
formalised as a rule system in [17] but this relies on explicitly recording all facts
and performing a computation on a special end of trace event.

– Non-Determinism. In [3], QEA were given some-path non-determinism but in [17]
we observed that the most common use of non-determinism was to capture neg-
ative properties (the bad behaviour) and in this case all-path non-determinism is
preferable. Hence, MARQ [24] supports both. To also support some-path non-
determinism here (which is not commonly used) we would need to add branching
and a notion of good facts to our rule systems (as is done in RULER).

Both existential quantification and non-determinism are rarely used features of QEA.

Efficiency. In this translation we are able to go from QEA, which have a highly efficient
monitoring algorithm [6], to rule systems, which do not [16]. This appears to be the
wrong direction to make gains in efficiency. However, we can make two observations
that may lead to improvements in efficiency in both systems.

Firstly, let us consider the translation of the UnsafeIter property given in Figure 5
where we also give the explicit-domain labelled QEA. On inspection we can see that
the rule definitions r1(i), r1(c), and r1(c, i) are redundant as every trace that leads to a
rule instance 〈r2, θ〉 via these rules will also be produced if they are absent. This should

〈1, {}〉 〈2, c, i}〉 〈3, {c, i}〉

〈4, {c, i}〉〈1, {i}〉 〈1, {c}〉 〈1, {c, i}〉

∀c∀i
create(c, i) update(c)

use(i)create(c, i)use(i)
update(c)

update(c), create(c, x) if x 6= i

use(i), create(x, i) if x 6= c

create(c, i)

create(c, i)

r1


update(c), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i)→ r1, r1(c)
create(c, i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i)→ r1, r2(c, i)
use(i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i)→ r1, r1(i)


r1(c)


create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i)→ r1(c), r2(c, i)
use(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i)→ r1(c), r1(c, i)
create(cp, i), c 6= cp, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i)→ r1(c), r1(c, i)


r1(i)


create(c, ip), i 6= ip, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i)→ r1(i), r1(c, i)
update(c), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i)→ r1(i), r1(c, i)
create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i)→ r1(i), r2(c, i)


r1(c, i)

{
create(c, i)→ r2(c, i)

}
r2(c, i)

{
update(c)→ r3(c, i)

}
r3(c, i)

{
use(i)→ r4(c, i)

}
r4(c, i) {}

Fig. 5. Fully transformed QEA and corresponding rule system for the UnsafeIterator property.

not be surprising as if we remove these rule definitions the rule system becomes very
similar to the one given in Section 3.3, only with the addition of maximality guards. By
making some operations carried out by the slicing structure explicit, we can identify an
inherent redundancy in this computation, which should lead to an optimisation of the
monitoring algorithm for QEA. Formalising this redundancy both for rule systems and
QEA remains further work.

Secondly, one hope for this translation was to identify a fragment of rule systems
that are amenable to the efficient indexing-based monitoring algorithms used for QEA.
After removing the redundancy identified above the first rule definition becomes

r1
{
create(c, i), !r2(c, i), !r3(c, i), !r4(c, i)→ r2(c, i), r1

}
which, when compared to the rule system in Figure 2, includes additional negated rule
expressions in the premises (which add to monitoring complexity). So taken ‘as is’ the
resulting rule system is likely to be less efficient. However, these negated rule expres-
sions give an explicit order in which to check rule definitions when matching incoming
events (in a similar way to how indexing works for QEA) and it is plausible that this
can be used to improve RULER’s monitoring algorithm by either detecting rule systems
of this form or automatically checking if the given rule system is equivalent to a rule
system of this form (as it is in this case). Therefore, the translation suggests a future
direction for developing efficient indexing for rule-based runtime verification tools.

Treatment of Data. There are two main differences in the treatment of data that this
work has highlighted. Firstly, QEA makes quantification domains implicit whereas rule
systems make them explicit e.g. in QEA new bindings are produced by the monitoring
algorithm whereas a rule needs to fire for a new binding in a rule system. This can
have implications for readability – in rule systems it is somewhat easier to see what the
domains are but in some circumstances having to encode these domains can make the
actual behaviour difficult to understand. For example, the resulting rule system for the
Broadcast property is much bigger than the original QEA. An advantage of making the
domain explicit in rule systems is that domain knowledge can be used to ignore some
part of the domain (as seen in the UnsafeIterator example above). This translation pro-
vides a mechanism for understanding exactly what the domain of quantification defined
by a QEA is. Secondly, the use of maximality in trace-slicing hides a lot of operational
details in the semantics – making this explicit in rule systems demonstrates the implicit
work required to ensure that maximality is preserved. In some cases maximality is not
necessary and this work can be removed in a rule system.

Generality. We now consider how general this translation is i.e. does it apply to all
trace-slicing and rule-based approaches. The first system to use the trace-slicing idea
was tracematches [1]. The use of suffix-based matching meant that the authors avoided
the main technical difficulty in slicing i.e. dealing with partial valuations, which re-
quired maximality. Our translation does not work with suffix-matching but this could be
encoded as another transformation on the QEA. The JAVAMOP system [22] has made
the slicing approach popular with its efficient implementation. The QEA formalism
[3, 23] was inspired by JAVAMOP. The notion of slicing presented here is compatible
with that used in JAVAMOP as this also relies on maximality. Rule systems for runtime
monitoring were introduced by the RULER tool [4, 2] and are used in TraceContract
[5] and LOGFIRE [16] where a similar approach is taken i.e. a global set of instances or
facts are rewritten by an associated set of rules. The rule systems described here can be
considered a core subset of RULER and could be embedded into these other systems.

6 Conclusion
We have described the formal construction of a translation from the parametric trace
slicing based QEA formalism to a rule system in the style of RULER. The translation
has been shown to be equivalent to the small-step semantics for QEA.This translation
gives insights into how parametric trace slicing and rule systems handle data differ-
ently. We observed that, to ensure the same property is described, it is necessary to (i)
enforce complex maximality constraints on rule definitions, making them heavily inter-
dependent, and (ii) add additional events and intermediate states to record the possible
valuations as they are created. We have implemented the translation as a SCALA pro-
gram. This will allow us to explore further optimisations of the translation, for example,
by identifying redundant intermediate states and performing a backwards-analysis to
introduce unquantified variables when they are first needed (the AuctionBidding trans-
lation would benefit from this). We are also looking at formalising this work in a proof
assistant to give more rigorous guarantees of its correctness. In our general work on
exploring the relationships between specification languages for runtime verification our
next step will be to translate rule systems into a first-order temporal logic.

References

1. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,
Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble.
Adding trace matching with free variables to AspectJ. SIGPLAN Not., 40:345–364, October
2005.

2. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time monitoring: from
EAGLE to RuleR. J Logic Computation, 20(3):675–706, June 2010.

3. Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Rydeheard.
Quantified event automata: Towards expressive and efficient runtime monitors. In FM, pages
68–84, 2012.

4. Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime
verification. In VMCAI, pages 44–57, 2004.

5. Howard Barringer and Klaus Havelund. Tracecontract: a Scala DSL for trace analysis. In
Proc. of the 17th international conference on Formal methods, pages 57–72, Berlin, Heidel-
berg, 2011.

6. Ezio Bartocci, Borzoo Bonakdarpour, Yliès Falcone, Christian Colombo, Normann Decker,
Felix Klaedtke, Klaus Havelund, Yogi Joshi, Reed Milewicz, Giles Reger, Grigore Rosu,
Julien Signoles, Daniel Thoma, Eugen Zalinescu, and Yi Zhang. First international com-
petition on runtime verification. International Journal on Software Tools for Technology
Transfer (STTT), 2017.

7. Ezio Bartocci, Ylies Falcone, Adrian Francalanza, Martin Leucker, and Giles Reger. An
introduction to runtime verification. In Lectures on Runtime Verification - Introductory and
Advanced Topics, volume 10457 of LNCS, pages 1–23. Springer, 2018.

8. David Basin, Mat Harvan, Felix Klaedtke, and Eugen Zlinescu. Monpoly: Monitoring usage-
control policies. In Sarfraz Khurshid and Koushik Sen, editors, Runtime Verification, volume
7186 of Lecture Notes in Computer Science, pages 360–364. Springer Berlin Heidelberg,
2012.

9. Andreas Bauer, Jan-Christoph Kster, and Gil Vegliach. The ins and outs of first-order runtime
verification. Formal Methods in System Design, pages 1–31, 2015.

10. Laura Bozzelli and César Sánchez. Foundations of boolean stream runtime verification.
Theoretical Computer Science, 631:118–138, 2016.

11. Feng Chen and Grigore Roşu. Parametric trace slicing and monitoring. In Proceedings of the
15th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’09), volume 5505 of LNCS, pages 246–261, 2009.

12. Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner,
Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: Runtime monitoring of
synchronous systems. In Proc. of the 12th Int. Symposium on Temporal Representation and
Reasoning, pages 166–174, 2005.

13. Normann Decker, Martin Leucker, and Daniel Thoma. Monitoring modulo theories. In Tools
and Algorithms for the Construction and Analysis of Systems - 20th International Confer-
ence, TACAS 2014., pages 341–356, 2014.

14. Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. In Manfred Broy
and Doron Peled, editors, Summer School Marktoberdorf 2012 - Engineering Dependable
Software Systems, to appear. IOS Press, 2013.

15. Sylvain Hallé and Raphaël Khoury. Runtime monitoring of stream logic formulae. In
Foundations and Practice of Security - 8th International Symposium, FPS 2015, Clermont-
Ferrand, France, October 26-28, 2015, Revised Selected Papers, pages 251–258, 2015.

16. Klaus Havelund. Rule-based runtime verification revisited. International Journal on Soft-
ware Tools for Technology Transfer, 17(2):143–170, 2015.

17. Klaus Havelund and Giles Reger. Specification of parametric monitors. In Formal Modeling
and Verification of Cyber-Physical Systems, 1st International Summer School on Methods
and Tools for the Design of Digital Systems, Bremen, Germany, September 2015, pages 151–
189, 2015.

18. Klaus Havelund and Giles Reger. Runtime verification logics - a language design perspec-
tive. In KIMfest 2017. Springer, 2017.

19. Klaus Havelund, Giles Reger, Eugen Zalinescu, and Daniel Thoma. Monitoring events that
carry data. In Lectures on Runtime Verification - Introductory and Advanced Topics, volume
10457 of LNCS, pages 60–97. Springer, 2018.

20. Martin Leucker and Christian Schallhart. A brief account of runtime verification. Journal of
Logic and Algebraic Programming, 78(5):293–303, may/june 2008.

21. Ramy Medhat, Yogi Joshi, Borzoo Bonakdarpour, and Sebastian Fischmeister. Parallelized
runtime verification of first-order LTL specifications. Technical report, University of Water-
loo, 2014.

22. Patrick Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Roşu. An overview
of the MOP runtime verification framework. J Software Tools for Technology Transfer, pages
1–41, 2011.

23. Giles Reger. Automata Based Monitoring and Mining of Execution Traces. PhD thesis,
University of Manchester, 2014.

24. Giles Reger, Helena Cuenca Cruz, and David Rydeheard. MARQ: monitoring at runtime
with QEA. In Proceedings of the 21st International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’15), 2015.

25. Giles Reger, Sylvain Hallé, and Yliès Falcone. Third international competition on runtime
verification CRV 2016. In RV 2016, 2016.

26. Giles Reger and David Rydeheard. From first-order temporal logic to parametric trace slic-
ing. In Ezio Bartocci and Rupak Majumdar, editors, Runtime Verification: 6th International
Conference, RV 2015, Vienna, Austria, September 22-25, 2015. Proceedings, pages 216–232,
Cham, 2015. Springer International Publishing.

27. V. Stolz and E. Bodden. Temporal assertions using AspectJ. In Proc. of the 5th Int. Workshop
on Runtime Verification (RV’05), volume 144(4) of ENTCS, pages 109–124. Elsevier, 2006.

A Correctness of the translation
Here we show that the translation of Section 4 is correct i.e. the QEA and rule system
accept the same traces. We first consider the case where Y = ∅ i.e. there are no un-
quantified variables and therefore the valuations in rule instances correspond directly to
valuations in the domain of the monitoring state from the QEA semantics.

Lemma 1. Let ∆ be a fact of a rule system produced by the translation of a QEA with
Y = ∅ and let a be a ground event. The rule instance 〈ri, θi〉 ∈ ∆ will fire for a with
a rule term of kind (ii) to produce 〈rk, θk〉 if and only if θk ∈ extensions(θi,a) for the
domain-explicit labelled form of the QEA.

Proof. Firstly, for the domain-explicit form from(a) in the QEA semantics can be re-
placed by the equivalent

{match(a,b) | ∃b ∈ A(X ∪ Y) : matches(a,b)}

as one no longer needs to consider submaps of the matching valuation as the domain-
explicit form extends the alphabet to ensure there will be an event which, when matched
with, will produce this submap.

The set extensions(θi,a) is then given by extending θ by consistent valuations in
from(a). The domain-explicit form ensures that whenever there is a state that is not
labelled with all quantified variables then there will be a transition for every event b
that could extend the label. Therefore, there will be a rule of kind (ii) for every such
event and these will fire to produce exactly the valuations in extensions(θi,a).

Lemma 2. Let ∆ be a fact of a rule system produced by the translation. If 〈ri, θi〉 ∈ ∆
fires with a rule term of kind (ii) to produce 〈rk, θk〉 then maximal(∆, θk) = θi.

Proof. We assume that 〈ri, θi〉 ∈ ∆ fires with a rule term of kind (ii) to produce 〈rk, θk〉
and show that maximal(∆, θk) = θi. Recall that maximal(∆, θk) = θi iff

θi ∈ ∆ ∧ θi v θk ∧ ∀θ′ ∈ ∆ : θ′ v θk ⇒ θi 6@ θ′

The first conjunct holds by definition and the second conjunct follows from the rule term
being of kind (ii) (i.e. S ⊂ S′). The last part can be shown by contradiction. Assume
〈r′, θ′〉 ∈ ∆ such that θ′ v θk and θi @ θ′. This means that dom(θi) ⊂ dom(θ′) and
therefore one of the terms !r1(S1), . . . , !rn(Sn) in the corresponding kind (ii) rule term
is false and would not fire for 〈ri, θi〉, a contradiction.

We use these two lemmas to establish equivalence of the domain-explicit form and
its translation. We have already argued for the language preservation of the transforma-
tions to domain-explicit form.

Theorem 2. Given a domain-explicit labelled QEA, let RS be the rule system given
by the above translation. For monitoring state Mτ and fact ∆τ if

Mτ = τ ∗ [[] 7→ {q0}] and {〈rq0 , []〉}
τ→ ∆τ

then for any valuation θ

Mτ (θ) = {q | 〈rq, θ〉 ∈ ∆τ}

Proof. By induction on τ . The base case is trivial as initially they both only contain the
initial state. For τ = τ ′.a we have

Mτ ′(θ) = {q | 〈rq, θ〉 ∈ ∆τ ′}

as our induction principle. As there must be the same valuations in Mτ ′ and ∆τ ′ we
will show that for any such valuation θ the effects on Mτ and ∆τ are the same. That is
(i) the information related to θ in each structure is updated in the same way and (ii) the
additional valuations added from θ due to a are the same.

Let us take (i) first. According to Definition 4 if a is not relevant then no rules are
fired, which matches with no transitions being taken in the single step construction. If
a is relevant then Mτ (θ) = next(Mτ ′(θ),a, θ). We can consider each q ∈Mτ ′(θ) sep-
arately. For q we know 〈rq, θ〉 ∈ ∆. We argue that the firing rule terms of rq(dom(θ))
match the result of next(Mτ ′(θ),a, θ). A condition of next is that no new quantified
variables are bound, this corresponds to kind (i) rule terms. As there is a one-to-one
correspondence between transitions and rule terms then if a transition is taken the cor-
responding rule will fire and vice versa. As per the definition of next, if no transitions
can be taken then the state remains the same, similarly if no kind (i) rule terms are fired
then either a kind (ii) rule term is fired and the rule instance persists or no rule terms
fire and the rule instance persists.

Now let us consider (ii). There are two parts, (a) exactly the same valuations are
added and (b) the new valuations are in the same states. The first part (a) follows from
Lemma 1 as the set of valuations added in both cases is the same. The second part (b)
follows from Lemma 2 as in both cases it is the maximal valuation that is used to define
which states are associated with the new valuation.

We will now sketch how this proof needs to be modified to take account of QEA
with non-empty Y . This can be used to establish Theorem 1 stated earlier. The only
difference in the above proofs is that the valuations in rule instances must now be split
into parts for quantified variables X and unquantified variables Y . The second part
plays no part in the proof as the proofs of Lemmas 1 and 2 as these are solely about
relating the domain of the monitoring state to the quantified parts of rule instances. In
the proof of Theorem 2 we need to convince ourselves that this part of the valuation is
correctly treated (i.e. equivalently to the next function). This follows trivially from the
fact that the same assignment is applied directly in both cases.

B Translation of Auction Bidding Property

The transformed QEA for this property is given as:

1,{} 2,{i} 3,{i}

4,{i}1,{i}

∀i

list(i,min)

bid(i, b) if b > c do a := b; c := a

sell(i) if c ≥ min

list(i,),
bid(i, a) if a ≤ c
sell(i) if c < min

list(i,),
bid(i, a)

bid(i, a),
sell(i)

list(i,min)

The resulting rule definitions are then

r1(m, c, a)



list(i, n), !r1(i,m1, c1, a1), !r2(i,m2, c2, a2), !r3(i,m3, c3, a3),
!r4(i, ,m4, c4, a4)→ r2(i, n, c, a), r1(m, c, a)

bid(i, b), !r1(i,m1, c1, a1), !r2(i,m2, c2, a2), !r3(i,m3, c3, a3),
!r4(i, ,m4, c4, a4)→ r1(i,m, c, a), r1(m, c, a)

sell(i), !r1(i,m1, c1, a1), !r2(i,m2, c2, a2), !r3(i,m3, c3, a3),
!r4(i, ,m4, c4, a4)→ r1(i,m, c, a), r1(m, c, a)


r1(i,m, c, a) { list(i, n)→ r2(i, n, c, a), r1(m, c, a) }

r2(i,m, c, a)


bid(i, b), b > c→ r2(i,m, b, b)
sell(i), c ≥ m→ r3(i,m, c, a)
list(i, x)→ r4(i,m, c, a)
bid(i, b), b < c→ r4(i,m, c, a)
sell(i), c < m→ r4(i,m, c, a)


r3(i,m, c, a)

{
list(i, x)→ r4(i,m, c, a)
bid(i, b)→ r4(i,m, c, a)

}
r4(i,m, c, a) { }

