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Abstract. The article considers the solution to the problem of longitudinal oscillations of a 
round elastic rigidly fixed rod under kinematic excitation of the free end. The results of 
solving the problem obtained with and without considering rotatory inertia of the body are 
considered. The application of the finite difference method for solving problems of this kind 
is substantiated. In this article algorithms have been developed that allow to unambiguously 
determine the stress-strain state at any point of an arbitrary section of a circular cylindrical  
rods based on the results of solving the corresponding problems of its vibrations. 
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1.  Introduction 
The simplest elements or components of structures usually consist of shells, plates 

and rods. Rods with a circular cross section are the main elements of many designs. 

Longitudinal vibrations of elastic rods were studied on the basis of analytical 
solutions [1,2]. Let us consider a quantitative study of longitudinal vibrations of 

rods, and the longitudinal waves propagation along the rod arising from a kinematic 

impact applied to the end of an elastic rod of radius r. 

The issue of numerical study of longitudinal vibrations of rods has recently 

acquired great scientific and practical importance [3]. 

The number of theoretical models for describing longitudinal vibrations of a 

rod by wave equation with taking into account both transverse displacement and 

shear deformation described in [4]. Application of numerical methods for 

calculation different applied problem conformity on the vase of theoretical models 

for longitudinal rod vibrations with ring defects or drill columns wide used [5-10] 

also. However, approach for solving of longitudinal vibration with kinematic 

excitation described below has interest because rotatory inertia was taken at 
calculation. 
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2. Statement of the problem 
Let us assume that the surface of a rod of length l is free from loads, one end is free, 

and the other is fixed to a gasket. Let the free end (z=0) of the rod be subjected to a 

longitudinal kinematic load     
1

sin,
t

t
AttzU


  along the rod, where t1 is the 

time of the load; A is the amplitude.  

When a rod vibrates under kinematic excitation, the tip should determine the 

tension-compression state of the rod that occurs when the load is applied. 

To solve the problem, we use the classical equation of longitudinal vibrations of an 

elastic rod of circular cross section in cylindrical coordinates [2]  
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Initial conditions are: 
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Boundary conditions are: 
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Let us take the following parameters when solving the problem: t=60s, ν=0.3, ρ 

=7850, E=2·1011 ,     l =50 cm. 

We use the finite difference method to solve the problem. To do this, we divide the 

rod along the height into parts with a step h, setting the time step τ: 
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We describe the algorithm for calculating the longitudinal vibration of an elastic rod 

(1) by the finite difference method. The recursive formula is determined in the same 

way as above: 
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The initial conditions are written in the form: 
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Boundary conditions are: 
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We obtain a solution to this problem, considering rotatory inertia. To do this, we 

use the following equation as the basic oscillation equation. 
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After some simplifications of this equation using the finite difference method, we 

obtain a recursive formula [3]. Here, the third part takes into account the rotatory 

inertia under the vibration of the rod cross-sections under the following conditions: 
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It is evident from (7) that despite the fact that the equation has the fourth-order, its 

order in terms of coordinates and time does not exceed the second-order. Therefore, 

in this case, the initial and final conditions of the problem consist of conditions (5) 

and (6). 



 

 
 

 

 

 

3. Numerical results 

Based on the calculations, the results obtained for the classical equation (1) 
zU - 

displacements and 
zzσ - stresses are presented in the form of graphs in Figs. 1–2. 

The results obtained on the basis of the refined equation (7) are shown in Figs. 3–5 

as time- and coordinate-dependent graphs of displacements zU . 

 

Fig. 1. Change in displacements with time in different sections of the rod 

Figure 1 shows: 

 the maximum value of the amplitude of longitudinal displacements 

corresponding to points k=20, 40, 60 in the cross-section of the round elastic 

rod kinematically excited from the free end does not exceed one (the 
amplitude of the given kinematic excitation); 

 displacements in different sites reach their maximum values at different 

times, depending on the conditions of the sites. 

 For example, if the longitudinal displacement of a point in section k = 20 

reaches its maximum value at time t = 1.8, the longitudinal displacement of a point 

in section k = 60 reaches its maximum value at time t = 3.8. Therefore, the farther 

the considered section is from the free end of the rod, the later the longitudinal 

displacement of the considered point of the section of the tip reaches its maximum 

value. 

 The displacement of the points of sections of a round elastic rod is 

characterized by a very rapid attenuation. 
 For example, in section k = 20, displacement oscillations occur only in the 

time interval after which there are practically no oscillations in this section. 



 

 
 

 

 

 

Fig.2. Change in stresses with time in various sections of the rod. 

Figure 2 shows that: 

  the change in stresses with time in different sections of the rod, 

kinematically excited from the free end, occurs according to sinusoidal law; 

  normal stresses in the rod sections, kinematically suspended from the free 

end, corresponding to grid points k = 20,40,60, are calculated with time. For 

example, the maximum stress amplitude in section k = 20 is approximately 

1.8, and the amplitude in section k = 60 is approximately 1.65. Therefore, 

the normal stress is reduced by approximately 19% from k = 20 to k = 60; 

  stresses in different sections of the rod have sufficient amplitude only at the 

initial time when the longitudinal wave reaches these sections, and this 

condition occurs during a time equal to one oscillation period and fades very 

quickly with a subsequent increase in time. 

4.  Discussion of results 
 Consider the graphs of displacements under kinematic excitation at the free 

end in various sections of the rod. 



 

 
 

 

 

 

 
Fig.3. Change of displacement in time in the section of the rod with kinematic 

excitation, corresponding to k = 20 

 
Fig.4. Change of displacement in time in the section of the rod with kinematic 

excitation, corresponding to k = 50 



 

 
 

 

 

 

 
Fig.5. Change of displacement in time in the section of the rod with kinematic 

excitation, corresponding to k = 80 

From the graphs (Figs. 3-5), we can draw the following conclusions: 

 the influence of rotatory inertia on the displacement amplitude increases with 

the distance from the end of a round elastic rod; 

 the change in stresses in various sections of a round elastic rod, kinematically 

excited from the free end, calculated on the basis of equation (7), also occurs 

according to a sinusoidal law, as in the case of equation (1). 

5. Conclusions  
Longitudinal vibrations of a round rigidly fixed elastic rod with kinematic excitation 

at the free end were numerically studied on the basis of equations (1) and (7), and 

the corresponding graphs were plotted for various values of k. The normal stresses 

in the sections of the round elastic rod corresponding to points k=20, 40, 60 of the 

grid attenuated over time. For example, at the highest stress amplitude in section 

k=20, equal to approximately 1.8, the value of the amplitude in section k=60 was 

approximately 1.65. Therefore, the normal stress decreases by approximately 19% 

when changing the cross section from k=20 to k=60.  

 From this, it follows that: 
1) the influence of rotatory inertia causes gradual damping of excitations for an 

elastic body both in coordinates and in time; 

2) the influence of rotatory inertia in cross sections on displacements and stresses 

leads to a substantial (to 20%) decrease in the amplitudes of their oscillations.  
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