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Abstract

Material defects caused by the movement of particles , or collisions between them at a molecular level are
investigated. Einstein associated Brownian motions with the second law of thermodynamics. Brownian motion
has been shown to cause a Wiener process degradation. Other types of random walks are introduced and the
estimates of failure time distribution due to the defects is estimated. The practical application of the findings in
reliability engineering practice (prediction, corrective action etc) is surveyed. The failure mechanisms described
herein are a Physics of failure approach. Yet it validates some of the basics of Reliability Standards (e.g.
the existence of constant failure rates, the Arrhenius model ) Prediction standards would overcome some of the
weaknesses of current prediction standards if they incorporated some PoF models, which are generally applicable
for all materials

keywords : Failure mechanisms, Random walks , thermodynamics, degradation

1 Introduction
Put a piece of solid under a powerful microscope. Continue to zoom in until
the continuous surface is replaced by distinct molecules, arranged in different
configurations , see Fig 1. Molecules are the smallest particle which retain the
chemical properties of a substance.
”Many of the physical characteristics of compounds that are used to identify them
like boiling points, melting points, density are due to inter molecular interactions” ([20])

Figure 1: Cristal under Microscope

This paper will focus on characteristics of the device material which induce failures of the device. . Table 1 lists
the questions answered by the paper.

SN Question
1 Is there a common cause failure for all materials composing devices? 1

2 Are the material level failure modes of the degradation type, or of the sudden failure type, or both?
3 Are the classical failure probability distributions (constant, Weibull, Normal, Log-normal etc) encountered ?
5 If degradation processes do occur, are the classical degradation models

(Wiener process, Gamma process )applicable?2

1 A precious hint for the answer is provided by [5], which showed that the limit of different random walk processes “ are Poisson
processes”. [5] does not discuss failures, but the fact that the intensities of these Poisson processes have intensity distributions like
“constant, Weibull, normal, log-normal” served as a sign-way that the answer lies in this neighbourhood. And in this neighbourhood it
was found , see section 3.
2 It is not surprising to find the Wiener process degradation, well explained by material level processes. The applicability of the
Gamma process, however will be more of a surprise: Usually the model is based on external shocks: The Essary Marshall Proschan
shocks (i.e. [6], [21], [2] or the shot noise model” [12].Cause of failure is associated with shocks applied to the degrading device. The
shocks are usually external. [12] allows internal shocks, (e.g. component failures), but even these failures are triggered externally. Our
investigation excludes the presence of external shocks (mechanical or electrical). We note that Gamma distribution is not mentioned
by [5] either. A random walk of particles leading to Gamma process and Transformed Gamma process degradation will be introduced
in the paper.

Table 1: Questions answered by paper

A list of notations and symbols is contained in section 2.
Section 3 provides answers to the questions listed in Table 1
The questions posed in Table 1 may appear pure philosophy , yet they have practical reliability engineering

applications: A failure mechanism at this level is a feature of the material. You choose to use the material, you
inevitably get its failure mode. As opposed to failures induced by external factors there are no protection methods
(shock absorbents, lightning- rods etc.)against these failures. The methods which can reduce the frequency of the
failure, or of its effects, like cooling, redundancy, replacement scheduling, require a reliability model for failure at
this level. Section 4 is dedicated to reliability engineering applications of the findings. While exploring this issue,
we unexpectedly found ourselves in a controversial region: Classical Reliability Models vs. Physics of Failure (PoF).
While a peaceful settlement of this ongoing dispute, is beyond the scope of this paper, the clarification of some of
its aspects , relevant to our microscopic examination, will be tackled.

Section 5 will conclude the findings.
Appendix A contains theorems and proofs used in the paper.
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2 Notations and Symbols

Table 2 describes the notations used in the paper.

Notation type Meaning Description

a scalar throughput of a particle

X random Bold character
variable (rv)

pmf(x) probability probability of X = x

Pdf(x) probability probability of x < X < x+ dx
density

Cdf(x) probability probability of X < x

E(X) scalar Expectation of X Upper case,
Var(X) scalar Variance of X black board font letter

Φ(x) probability Cdf of the standard
normal distribution of X

IGD probability Inverse Gaussian distribution Distribution of the
distribution time, a Brownian motion

with positive drift, takes
to reach a fixed
positive level.

R(t) Reliability Probability of no Upper case,
failures until t black board font letter

f(t) pdf Probability of
a failure
between (t,t+dt)

ϵ small scalar Defines the
acceptable error
in a calculated
probability

L Real The maximum degradation
allowed in the device throughput

η integer Limit for the number of = int(L/a)
degradation causing collisions

q(t) probability probability of collision
between particles of a material

∆t Time
Interval

Table 2: Notations and symbols

3 Random Walks

3.1 Random walks on a lattice

Definition 1. Lattice
An integer lattice , denoted Zn, is the lattice in the Euclidean space Rn whose lattice points are n-tuples of inte-

gers. A one-dimensional lattice consists of points with integer coordinate. Herein we shall allow lattices consisting
of points with coordinate equal to an integer multiplied by a constant scale factor (say a), not necessarily integer.

Definition 2. Random walk on a lattice.
A random walk is called “on a lattice “ when at any time the walking particles remain on the lattice.

Random walks on a lattice are used to describe diffusion of atoms, ions or molecules inside a crystalline solid.

3.1.1 Brownian Motion

Definition 3. Standard Wiener or Brownian (motion) process
“A real-valued stochastic process Wt :≥ 0 defined on a probability space (Ω, A, P ) is a standard Wiener (or

Brownian motion) process if it has the following properties:

1. The initial value of the stochastic process Wt ≥ 0 is zero with probability one, meaning P (W0 = 0) = 1.

2. The increment Wt −Ws is independent of the past, that is, Wu, where 0 ≤ u ≤ s

3. The increment Wt −Ws is a normal variable with mean 0 and variance proportional to t− s.”

Einstein [4] found that the position of a particle in a fluid moving and colliding randomly with other particles
will have a normal distribution with average 0 and standard deviation growing linearly with time. His deduction
was based on the second law of thermodynamics and indicated that the growing standard deviation is related to
the growing entropy .

The mathematical expression of a Brownian Motion, based on a simple random walk was introduced by Norbert
Wiener. A very simple derivation is found in [19], which is summarized as follows:

The position of a particle at t = 0 is X0 = 0. During ∆t it will move as defined by:

X∆t =

{
a, with probability 1/2

−a, with probability 1/2
(1)
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Obviously:
E(X∆t) = +1/2a− 1/2a = 0

Var(X∆t) = +1/2a2 + 1/2a2 = a2

If the process is repeated τ times then, since the movements are independent{
E(Xt+τ ) = 0

Var(Xt+τ ) = τa2.
(2)

The movement of N particles will have an average 0 and a standard deviation Nτa2. If N is large, by the central
limit theorem the movement will have a Normal distribution.

Thus the above motion satisfies the criteria of the definition of a Wiener Process.

Failures caused by Wiener process A Wiener process will manifest itself in a stand alone component by
continuous degradation of a parameter. When the parameter falls beyond a threshold it is considered failed.The
probability distribution of the time to failure will have an Inverse Gaussian Distribution (IGD).

Example 1. The capacity of an accumulator degrades with every charging. If it drops below a limit it is considered
“failed”. If it is used in a car, it won’t necessarily cause failure even if capacity is below limit. Failure will occur
only in long enough trips.

When N such components are shared to provide a throughput, one component “failure “ will not be felt, while
other components did not yet reach the limit. The distribution of the parameter being normal, so will be the
distribution of the total throughput. The total throughput is still Normally distributed but the variance increases
by a factor of N. Time to failure can be calculated using IGD.

3.1.2 Random walk with activation energy

The idea of a ”potential hole” retaining a particle, was presented in [11].
Suppose a particle A, in a ”potential hole”, will move only if the energy transferred to A is greater than a given

activation energy Ea. Suppose that the probability of the energy transfer being greater than Ea during a collision
is q. The motion of a particle A will be defined as follows:

X∆t =


0, with probability p = 1− q

a, with probability q/2

−a, with probability q/2

(3)

Let A be a particle in a component; its displacement causes a failure of the component. Let there be a number,
N, of such particles in the component. If particles of type B flow in a Poisson process with average rate ν then
within a short interval dt the probability for a collision will be dp = Nνdt, and the probability for a failure of the
component will be Nνqdt. The failure rate of the component will be λ = Nνq, that is this random walk will develop
into failures at a constant rate.

The above explains why is the Arrhenius model applicable for failure rate models. The Arrhenius model was
deducted for the speed of chemical reactions. Component failures can be caused by a physical dislocation, not
necessarily by a chemical reaction. But the start of both processes requires to move a particle from a stable
position: In one case the movement causes a failure, in the other it allows the forming of a chemical bound.

For the source of free moving particles B in a Poisson process with a constant rate see 3.2.1.

3.1.3 An asymmetric random walk

[10] presents a rather general example of asymmetric random walk on one dimensional lattice.

X∆t =


a, with probability q+

−a, with probability q−

0 with probability p = 1− q+ − q−

(4)

Observe that there is a probability that there is no movement at all. Why? The movement takes its energy
from the surrounding. It comes in packets in a Poisson process. The level of energy is a r.v. with a distribution.
When the level is below the activation energy required to move the particle from its position, it won’t move.

Why is q+ ̸= q−? In a diffusion process which has a directional field ( gravitational, electrical, magnetic, chemical
etc.) there is a preference to movement in one direction. A particular case for (4) will be considered, namely the

case when q− = 0 and q+ ≪ p. Since p− will not be required, we denote q
∆
= q+

xk∆t =

{
x(k−1)∆t + a, with probability q

x(k−1)∆t with probability p=1-q
(5)

Obviously:
E(X∆t) = +kqa+ p ∗ 0 = kqa

Var(X∆t) = +kqa2 + p0 = kqa2

Theorem 3.1. Asymmetric random movements of a particle
If:

1. the position of the particle at t = 0 is x = 0

2. a particle moves each ∆t according to (5)
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3. q ≪ 1

4. when x, the position of the particle exceeds a threshold L, occurs a failure of the component, which contains it

5. η
∆
= int(L/a) < ϵ/(2q2)

then:
at N∆t (N → ∞;Nq < ∞), the degradation (increase of x) will be :

1. a Gamma degradation process , if q is constant

2. a Transformed Gamma degradation process [8] if q is monotonically increasing with time

Proof.

J(N∆t) = XN∆t/a is the r.v. of the number of times the particle moved untilN∆t. The reliability of the component
at t = N∆t, i.e., the probability of J < L/a is

R(N∆t) = Ση−1
j=0

(
N

j

)
qjpN−j (6)

If η
∆
= int(L/a) < ϵ/(2q2) (see [22]), then R(t) can be approximated by Poisson distribution, allowing an error ϵ for

the probability..

R(N∆t) = Ση
j=0

(Nq)j

j!
e−Nq (7)

By theorem A.1 (see appendix):

R(t|η) = Ση
j=0

(q′(t)t)j

j!
e−q′(t)t

pdf(t|η) =


a) [q

′t]η−1

(Γ(η))
q′e−q′t; If q constant

b) [tq
′(t)]η−1

(Γ(η))
[tq′(t)]′e−tq′(t); If q increases with t

(8)

(8) a) describes a random walk causing a Gamma degradation process
(8) b) describes a random walk causing a Transformed Gamma degradation process

In the above a was described as a movement of a particle due to a collision. It also could represent a particle
throughput decrease of amount a .

In this case the Gamma process is involved with the increase of degradation of a throughput until it reaches a
certain allowed limit L

Theorem A.2 proves, (see Appendix A) that if motion is bi-directional, see (4), but P− ≪ P+ ≪ 1 the pdf of
failure will be identified as a gamma process, by a limited accuracy experiment.

3.2 Random displacement random walk

.

3.2.1 Simple linear random walk

Eliazar [5] defines a “simple linear random walk” as follows:{
X0 = 0

Xt = Σt
I=0∆i

(9)

where ∆i is the ith IID sample drawn from ∆, a r.v. with a PDF given as f∆(x);−∞ < x < ∞.
What will be f(X) ? Following [5]
if Xt−1 = x− u and ∆t−1 = u then: xt+1 = x. The above will hold for any ∞ < u < ∞:

f(xt+1) =

∫ ∞

−∞
f(x− u)f∆(u) (10)

This is a functional equation with f(X) as unknown.[5] finds two functions which can satisfy (10). The first one
is a constant function f(x) = c. The other one is an exponential function which will not be treated in this paper.
It is easy to verify that f(x) = c satisfies (10):

c = c

∫ ∞

−∞
f∆(u) = c
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Failures caused by simple linear random walk Suppose a failure occurs in a component if the position of
one of its particles exceeds a limit (|X| > L).

Assume the position of the particle at t was at Xt = u− x;−L < u− x < L
-A failure of a component occurs between (t, t + dt), given that it was operational at t if |Xt+1| > L. The

probability of such an event is usually called hazard function and is denoted by h(t). Following the reasoning of [5]:

h(t)
∆
= f(|xt+1| > L

∣∣∣∣(|xt| ≤ L) =

=

∫ −L

−∞ f(x− u)f∆(u)du+
∫∞
L

f(x− u)f∆(u)∫∞
−∞ f(x− u)f∆(u)

du

Using f(x) = c;∀x

h(t) =
c
∫ −L

−∞ f∆(u)du+ c
∫∞
L

f∆(u)du

c
= λ

where λ
∆
=

∫ −L

−∞ f∆(u)du+
∫∞
L

f∆(u)du is a constant in t.
Reliability engineers call components with constant hazard function “constant failure rate components”.

3.2.2 Simple geometric random walks

Definition 4. [5] defines a simple geometric walk as follows :
“ The walk begins, at time t = 0, from an initial position Y 0 which is a general positive-valued random variable.

At times t = 1, 2, 3,... the walk makes multiplicative steps of magnitudes m1,m2,m3,..., respectively. The steps
are independent of the initial position y0, and their magnitudes are IID copies of a general positive-valued random
variable M. The temporal positions of the simple geometric random walk are thus given by: “

Y = y0Π
t
i=1Mi (11)

Example 2. An example for such a walk: Let Y be the number of free electrons in an insulating material. At
t = 0 there are y0 free electrons, During dt a free electron i collides with another stable electron j and frees it with
probability r. As the number of free electrons increases the insulator becomes more and more conductive.

Y∆t = y0(1 + r1)

Yt∆t = y0Π
t
i=1(1 + ri)

Denote Mi
∆
= 1 + ri, you get (11). Mi is a r.v. with a PDF gM (x).

Following the reasoning of [5] the pdf of Y is deduced as follows: if Yt = y/u and Mt = u then yt+1 = y. The
probability for Y = y for all 0 ≤ u < ∞:

gt+1(y) =

∫ ∞

0

dFt(y/u)

dy
gM (u)du =

=

∫ ∞

0

dFt(y/u)

d(y/u)

d(y/u)

dy
gM (u)du

gt+1(y) =

∫ ∞

0

g(y/u)
1

u
gM (u)du (12)

By [5] there are two solutions for g(t), to this functional equation, for all t > 0:

1. ghar(y) = c/y

2. gpow(y) = cyβ−1, where β is a constant which satisfies∫ ∞

0

u−βgm(u) = 1 (13)

We are interested in gpow. It is easy to verify that it satisfies (12):

cyβ−1 =

∫ ∞

0

c(
y

u
)β−1 1

u
gM (u)du

cyβ−1 = cyβ−1

∫ ∞

0

c(
1

uβ
ugM (u)du

Using (13)
cyβ−1 = cyβ−1 (14)

Failures caused by simple geometric random walks.
Assume that collision with a free particle evolving by a geometric random walk causes failures of a component.

The probability of a failure at t growth linearly with the probability density of Y at t. Denote by η the growth
factor

h(y) = ηg(y) = ηcyβ−1

Denote αβ ∆
= β/cη

h(y) = (β/α)(y/α)β−1

The above is recognized as the hazard rate of a Weibull distribution. (e.g [17] eq (5.5) pge 64).
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Table 3: Pdf of hazard rate.

k = 1a k > 1

Random walk Symmetric Asymmetric
No Ea b with Ea (stress) with Ea

Linear (on a lattice) const Wiener (IGD) Γ Γc

Linear (random displacement) const const Γ Γ
Geometric Weibull Tr Γd Tr Γ Tr Γ

a [a] k = L/a is the number of collisions until the threshold L is exceeded , where a is the throughput loss by a collision .
b [b] Ea stands for activation energy .
c [c] Γ symbolizes a Gamma Process , see (8).
d [d] Tr Γ is a symbol for Transformed Gamma Process , see (8)

3.3 Summary of random Walks

Table 3 lists the random walk types described in the paper
Many failures are the result of collisions between moving and stable particles of the material. Table 3 summarizes

the resulting failure rate distributions

3.3.1 Constant failure rate

[16] In a metal line carrying significant current density, the free electrons push and move the metal
atoms in the direction of the electron wind, i.e., towards the anode end of the line; hence the name
electromigration (EM) for this effect. The resulting atomic flow increases compressive stress at the
anode and tensile stress at the cathode, which creates a stress gradient that presents an opposing driving
force that retards EM [1]. If the levels of stress become high enough, a void may be created due to
high tensile stress near the cathode, or a hillock (extrusion of metal through cracks in the dielectric)
may form due to high compressive stress near the anode, which can either way result in circuit failure.

A few failue mechanism examples can be deducted from the above :

1. let x of (9 ) represent the momentum of an electron in the electron wind. If it will exceed a certain limit L its
high momentum will be transmitted to its surrounding , so that the electron wind becomes an electron storm:
The many voids will accumulate fast and cause a cutoff of the conductor. By 3.2.1 such a failure will occur
at a constant rate.

2. Electromigration : Is the results of accumulated number of voids , or of hillocks . If x in (9) is the accumulated
count of voids /hillocks then the failure will occur at a constant failure rate. This matches Blacks Law ( see
equation (5) of [14]) . The constant rate increases in accordance with Arrhenius equation. This is consistent
with the fact that the creation of void/hillock requires the movement of a stable atom from a ”potential trap”.

3. The very existence of the electron wind , with randomly distributed momentum, explains the Johnson-Nyquist
Noise (see 4.2.4.1 [14])

3.3.2 Weibull failure rate

Example 2 was given for failures of an insulating material with an increasing failure rate with a Weibull
distribution. Indeed insulating materials have been found having a Weibull failure rate (e.g. [17] paragraph
10.3)

4 Reliability Engineering Application

Reliability engineering is about designing , verifying and correcting products to assure a desired reliability level.
The differentiation between failures , inherent to the material of a component , and those caused by the design (e.g.
stress due to interaction with other devices), or by the environment is obviously mandatory.

4.1 Reliability prediction

Reliability prediction is a basic tool for reliability design. The various methods are discussed in current literature
[23]. The findings of this paper are relevant to the ” merits and demerits ”of two ”bottom up ” approaches widely
utilized (see [7], [3]) : the black box (a.k.a prediction standards) and the white box (a.k.a PoF) approaches.

1. The ”black box” approaches (see [18]) defines formulas for a closed set of components. A typical form is :

λ = λb ∗Πt, ∗Πs ∗Πa

where λb is a basic failure rate of the components while the Π coefficients describe environmental constraints
: temperaure, operational stress, on-off activations etc. While formulas for λb might depend on some design
elements : material (ceramic vs. tantalum, silicon vs. germanium), structure : (number of gates) , the term
”black box ” is justified since these design data are usually part of the specification of the components and
they don’t depend on the mechanism which makes the component work.
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2. White box approach (see [14]) , a.k.a Physics of failure (PoF) concentrates on mechanisms of failures : electrical
isolation or connection failures, errosion/corrosion/deformation due to the stresses during operation. The
progress of the state of the art allows identification of new signatures or failure mechanisms of operating
systems . Each failure mode has a ”non-exhaustive list” of failure modes.

Table 4 lists a short list of comparing items (most relevant to the discussion herein).

Table 4: Black box vs White box.
Merits Drawbacks

Black box Closed list of methods constant failure rates
(Standards) Generic continuous update required

Simple System level calculations industry averages provided
inaccurate Π factors

White box Accuracy Costly tests
(Pof) Sensitivity analysis available Need for manufacturing design data

Complex system level models

The following can be concluded from the comparison:

1. Constant failure rates. The available standards deal only with constant failure rate components (mostly
for electronics). Non constant failure rate components must utilize some form of Pof/Accelerated Life
tests/Accelerated degradation tests. A few number of non-constant rate components can be integrated in
mission reliability models based on Markov [9], or Monte Carlo techniques [13]. They also can be integrated
in Logistic and LCC costs predictions [15].

For a complex electronic equipment with a large number of components a specific formula for each component
would be a tremendous chalenge. The use of constant failure rate models makes this models practicable.
There has been a lot of misuse of constant failure rate models and as a consequence a ”No MTBF” movement
was established. Some of its devotes went as far as denying the existence of constant failure rate. This paper
however states that as long as simple linear random walks exist , so do constant failure rates.

2. The need for design data on the structure and processes inside a component will make some POF techniques
possible only if the manufacturer cooperates, or provides his test data.

3. Continuous update requirement. MIL-HDBK-217 hasn’t been updated for quite a long time. It ceased
to be applicable. The continuous effort to maintain more recent standards (Telcordia, IEC 62380 etc.) is a
demanding one. This paper shows that this efforts can be diminished significantly if the basic failure rate
models had a parameter proportional to the number of particles in the device (e.g. weight, volume) . If such
a parameter was incorporated in the model, it could have forseen the dramatic improvement of reliability of
semiconductor devices, due to its miniaturization. As a consequence fewer update would be necessary.

4. Inaccurate Π factors. The Πt factor accounting for temperatures were based on the Arrhenius model. This
is consistent with the model presented herein. Some other Π factors could be developped, based on PoF and
incorporated in the standards , similarly to Πt

(a) mechanical shocks and vibration , based on finite element models could replace the environmental pa-
rameters (GM, GF, AIF etc.). Such a model would differentiate between a good shock absorbing design
and a poor one, between vehicles moving on well maintained higways and degraded rural roads.

(b) thermal shocks based on finite element models could provide parameters affecting failure rates for mission
profiles with sudden temperature changes

(c) Peck’s temperature humidity model , could allow the provision of adequate Πh instead of the currently
used , too general, Naval shelterd/ unsheltered coefficients

4.1.1 Reliability improvement

Inprovements as a consequence of Reliability growth program, FRACAS, Customer complaints can benefit from
the findings of this paper by:

1. Differentiating between failure modes attributed to the material and those attributed to external factors
(environment, interaction with other devices)

2. Provision of natural limits to reliability improvements at material level.

5 Conclusions

The second law of thermodynamics (random walks of particles ) was identified as a source of failure mode at material
level. The universality of this law implies that these failures appear in all materials.

The Wiener degradation process has been developed based on random walks of particles , right from the begin-
ning. The (Transformed) Gamma process was found as a general mfailure mechanisms [1] . It is shown that particle
random movements can be the mechanisms of such a degradation. These movements can cause a variety of failures
of the device : T degradation failures (e.g. Gamma process) and sudden failure models (constant failure rate,
Weibull, Normal). The distinction between sudden failures and degradation failures is often a matter of definition
(e.g. if a car’s velocity became less than 1 km/hour is the car degraded , or faulty?)

This paper can be classified as a Physics of failure approach. Yet it validates some of the basics of Reliability
Standards (e.g. the existence of constant failure rates, the Arrhenius model ). The advantage of prediction standards
is, that they allow prediction of large and complex system. Its drawbacks ( frequent updates, coarse estimates for
environmental factors) could be diminished by incorporating parameters developed by PoF approaches, including
this work , like in the case of Πt factor. The number of non standard units in the system which require POF
,Accelerated life/degradation tests can be reduced.
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Appendix

A pdf of failure time

A1 Asymmetric random walk

.

Theorem A.1. Uni- directional asymmetric random walk .
Given that the reliability of the particle is calculated by:

R(N∆t) = Ση−1
j=0

(Nq(t)∆t)j

j!
e−Nq(N∆t)

Case 1. accelerating q

pdf(t)H =
[tq′(t)]H−1

(Γ(H))
[tq′(t)]′e−tq′(t)

Case 2. Constant q
the pdf of the time to failure is given by

pdf(t)H =
[tq]H−1

(Γ(H))
qe−tq

Proof.

Note A.1. The commonly encountered collision time between collisions is a fraction of a second. Typical times to failures in compo-
nents is expessed in million hours. N the number of collisions required for a failure N > 106. Since ∆t is fraction of a second and the
degradation processes happen in million hours it is reasonable to consider N∆t as a continuous time : Taylor expansion of reliability
functions with ∆t < 10−5 will allow to neglect terms in ∆tj , j > 1. So ∆y/∆t ≈ dy/dt

Replacing N∆t by t the reliability of the particle becomes

R(t) = ΣC−1
j=0

(tq′(t)j

j!
e−tq′(t)

pdf(t) =
d

dt
ΣC−1

j=0

(tq′(t)j

j!
e−tq′(t) (A1)

The proof is by induction.

I. for C = 1 (A1) becomes
f(t) = q′(t)e−q(t)(x)

which is true, since the above is − d
dtρ(t) (for no failures allowed the system is a series system. Remember that

q′(t) = −ρ′(t))

II. Suppose the theorem is true for C = H from (A1)”

pdf(t)H+1 =
[ H∑
j=1

d

dt

tq′(t)

j!

]
+ pdf(H + 1) =

= pdf(t)H − d

dt

[tq′(t)]H

(H)!
e−tq′(t)

= [
�����������
[tq′(t)H−1

(H − 1)!
[tq(t)]′e−tq′(t))−

−
((((((((((((((
H

H!
[tq′(t)H−1[tq′(t)]′e−tq′(t)(x)]+

+
[tq′(t)]H

(H)!
[tq′(t)]′)e−tq′(t)

pdf(t)H+1 =
[tq′(t)]H

(Γ(H + 1))
[tq′(t)]′e−tq′(t)

Theorem A.2. (Bidirectional asymmetric random walk )
If

1. an asymmetric random walk on a lattice of a particle is defined by (4)

2. the component containing the particle fails if the particle’s movement exceeds L as p→0

then
the limit of pdf of failure time, as p→0 r will have a gamma distribution

8



Proof. [10] shows that the probability of finding the RW on the lattice site m after N steps is

Gm(N) = Σngm(n)W (n|N) (A2)

where

W (n|N) =
N !

n!(N − n)!
(P+ + P−)

n(1− P− − P+)
N−n

gm(n) =
n!

n+!n−!
p
n+

+ p
n−
− (A3)

p+ =
P+

P+ + P−
p− =

P−

P+ + P−

n+ = (n+m)/2 n− = (n−m)/2 m = n+ − n−

Introducing the following into (A3)

lim
P−→0

p+ = 1 lim
P−→0

p− = 0 lim
P−→0

n− = lim
P−→0

NP− = 0

lim
P−→0

n+ = m+ lim
P−→0

n− = m = n

lim
P−→0

p
n−
− = lim

P−→0
(

P−

P+ + P−
)NP− = lim

P−→0

(P
P−
− )N

(P+ + P−)NP−
= 1

Results
lim

P−→0
gm(n) = 1

Introduce this into (A2)

Gm(N) = Σm
n=m)W (n|N) =

N !

m!(N −m)!
(P+)

m(1−

−P+)
N−m

The reliability is the probability of m < L

R(N∆t) = ΣL−1
m=0

N !

m!(N −m)!
(P+)

m(1− P+)
N−m

The proof follows that of Theorem 3.1 from (6).
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