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Abstract—The problem of MPI programs execution time pre-
diction on a certain set of computer installations is considered.
This problem emerges with orchestration and provisioning a
virtual infrastructure in a cloud computing environment over a
heterogeneous network of computer installations: supercomput-
ers or clusters of servers (e.g. mini data centers). One of the key
criteria for the effectiveness of the cloud computing environment
is the time staying by the program inside the environment.
This time consists of the waiting time in the queue and the
execution time on the selected physical computer installation, to
which the computational resource of the virtual infrastructure is
dynamically mapped. One of the components of this problem is
the estimation of the MPI programs execution time on a certain
set of computer installations. This is necessary to determine a
proper choice of order and place for program execution. The
article proposes two new approaches to the program execution
time prediction problem. The first one is based on computer
installations grouping based on the Pearson correlation coef-
ficient. The second one is based on vector representations of
computer installations and MPI programs, so-called embeddings.
The embedding technique is actively used in recommendation
systems, such as for goods (Amazon), for articles (Arxiv.org), for
videos (YouTube, Netflix). The article shows how the embeddings
technique helps to predict the execution time of a MPI program
on a certain set of computer installations.

Index Terms—Pearson correlation coefficient, matrix decom-
position, embeddings, MPI, execution time prediction, ensemble

I. INTRODUCTION

The idea of building a virtual infrastructure in a cloud
computing environment over a heterogeneous network of
computer installations (CI) is not new [1], [3]. To do this
several administrative authorities called federates, allocate
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some their computational resources for the cloud computing
environment operation. Such unions, called federations, have
already been established [1], [4], some are only planning to
be created [2], [5]. Each federate can consists of several CIs
with different computer powers, such as high-performance
computing cluster, data center or supercomputer. Federate
provides resources of its computing environment 1 for creating
a virtual infrastructure in accordance with the access policy set
by the federate administration. Further in this article, the term
program will be understood as MPI Program.

One of the main criteria for the effectiveness of such cloud
computing environment is the time spending by a program
in this environment. This time consists of the time spent by
program in the queue (waiting time) and the program execution
time (execution time). This value depends on the resources
allocation algorithms of the cloud environment (CE) (mapping
virtual CIs to physical ones) and the queue discipline, taking
into account the heterogeneity of physical CIs.

The focus of this article is how to choose the most effective
CI that is a part of the federation computing environment for
the received program based on the minimum execution time
criterion. The article offers algorithms for program execution
time prediction on a certain set of CIs based on the execution
history of the program on different CIs.

The program execution time on the specific CI, as well
as the waiting time in the queue, can be predicted based
on the history of its executions on this CI [14], [15]. To
do this, various extrapolation algorithms can be used [16],
regression [6], or more complex algorithms are used, such as
the ensemble of decision trees (e.g. Random Forest). The main

1Further the computing environment will be understood as a heterogeneous
network of CIs



disadvantage of these algorithms is that they applicable only
to a single certain CI. Of course, the algorithms that were
mentioned above can be used to get estimates for programs
execution time on the several CIs. However, this requires a
history of running of this program on each CI from the set.
As a rule, this information isn’t available.

As noted above, in order to allocate programs between
several CIs, a history of program executions on each of the
CIs is required.

As demonstrated in this paper this requirement can be
relaxed: to predict the program execution time on several CIs,
some running histories of this program on them are sufficient.
Moreover, it is not necessary that each program starts on each
CI. The accuracy of the prediction depends on the number
of program running histories on CIs from a certain set. To do
this, the article proposes a new approaches to estimate program
execution time, which allows predicting the program execution
time on a certain set of CIs. The algorithms presented in this
article for implementing these approaches allow one to predict
the execution time of a program on a certain CI, even there is
no execution history the program on it.

In the proposed approaches, the problem of the program
execution time prediction is reduced to filling empty entries
in the matrix “Programs-Computers” built for a given set
of programs and a given set of CIs, in the entries which
is an execution time a certain program with certain sets of
arguments on a specific CI. For more information about the
mathematical statement of this problem see Section II.

In this article proposed two approaches to the program
execution time prediction problem on a certain set of CIs.
The first one is based on CIs grouping based on the Pearson
correlation coefficient [19]. It is shown that this method
should be used for dense “Programs-Computers” matrix (at
least 95% of entries are filled). The second one is based on
decomposition of “Programs-Computers” matrix into vector
representations of CIs and programs, so-called embeddings.
Here embedding is treated as a structured type of unstructured
data. For example, the form of a vector implies the structure
that is important here in contrast to hashing, which simply
converts a potentially infinite object into a finite one. In the
paper it is shown how to use embedding of program and
embedding of CI to predict the program execution time on
specific CI. To calculate embeddings, it’s proposed to use
the technique [20] decomposition of the matrix “Programs-
Computers”. In Section VI it is shown by experimental studies
that the second method works well with sparse matrices.
Histories of runnings of MPI and OpenMP benchmarks [21],
[22] on a dozens of different CIs were used for experiments.
This data is described in Section IV.

It’s important to emphases that, as it will be shown below,
the proposed decomposition technique results embeddings of
dimension 1, that allows to place a total order relation on a
set of CIs and programs.

The rest part of the article is structured as follows. The Sec-
tion V contains a description of the developed algorithms for
programs execution time prediction. Section VII describes the

application of the developed algorithms to solve the problem
of “minimization of the time spent by the program inside the
cloud environment”. In the last Section VIII, conclusions are
presented and goals for further research are formulated.

II. PROBLEM DESCRIPTION

We consider the case when almost nothing is known about
the program and the CI. The program source code and binary
code are not available, the architecture of the CI is unknown.
Only the program execution time, its arguments (see point 1
in Section 1) and the numbers of used resources of CI are
known.

Further, the program will be considered in the form of job
which has the following characteristics: the time when job is
submitted to the queue, the start time and end time, resource
utilization (cpu, ram, disk), input data, arguments of the pro-
gram and arguments of the computing environment in which
this job is started (e.g., the number of MPI processes, the
number of threads for OpenMP, and the amount of resources
needed to complete the job).

It is assumed that only the total amount of resources on the
CI is known: the number of nodes/CPUs/cores, the amount of
RAM and the storage space.

We will use the following notations to formulate the prob-
lem:

1) Pi – unique identifier of program;
2) {P1, P2, . . . , PN} = {Pi} – a set of N unique identifiers

of programs; Arg – arguments of program: program’s
arguments (for the executable file) and arguments of the
computing environment where the program is running
(the number of MPI processes, the amount of requested
computing nodes /CPUs /cores);

3) {Arg1, Arg2, . . . , ArgAi
} = {Argj} – here each Argi

is the set of arguments of i-th program. A total amount
of different sets of arguments – Ai;

4) [(Pi, Arg1), (Pi, Arg2), . . . , (Pi, ArgAi), (Pi, Arg1)] –
a history of Pi program running, arguments can be the
same in some pairs;

5) Ci – unique identifier of CI;
6) {C1, C2, . . . , CM} = {Ci} – a set of M unique identi-

fiers of CIs;
7) Matrix PC (P – “program”, C – “computer”) – the

matrix where rows correspond to history of running of
programs, columns correspond to the CIs. This matrix
is divided into groups of rows. There are N groups
in total (by the number of the programs). The i-th
group corresponds to the history of running of the i-
th program. The group consists of Ai rows, where
each matrix entry display the execution time of the
program Pi with the corresponding arguments Argi on
the corresponding CI. The matrix entry is empty if the
program was never run on this CI.

The PC matrix shows the history of finished program exe-
cutions. It can be built from log files of the CIs – C1, ..., CM .



The terms of the notations introduced above the problem
of program execution time prediction on a set of CIs can be
formulated as following:
• Given

– A set of N unique identifiers of programs – {Pi};
– For each program Pi a set with Ai sets of arguments

– {Argj}, |{Argj}| = Ai;
– A set of M unique identifiers of CIs – {Ci};
– A PC matrix where entries contain the execution

times of programs P (with the corresponding argu-
ments – Arg) on CI C;

• To find
– Fill in empty entries of the PC matrix, or in other

words predict the program execution times on the
CIs.

To evaluate the program execution time prediction, the
prediction error is calculated as follows:

PredictionError(Pi, Argj) =
|predict− target|

target
(1)

where predict is predicted time of program Pi with argu-
ments Argj , target is a true execution time of program Pi

with arguments Argj .
The total prediction error is calculated as an average of the

errors calculated using the equation (1) for all programs. This
allows you to compare algorithms among themselves.

III. RELATED WORKS

The problem of the execution time prediction has been
studied for a very long time. For example, for real-time
systems, the problem of estimation the worst-case execution
time (WCET) is still one of the main problems, since WCET
programs are used to build a schedule of tasks in real-time
systems. In [8] a model of the program and the computer
are built in order to estimate the program execution time on
the computer. In [9] the execution time of programs on Grid
systems are predicted. For time prediction purposes are used
Analytical approaches [10], [11], statistical approaches [12],
[13] approaches based on historical data [14], [15], time series
prediction [16], neural networks are also used [17]. Execution
time can be predicted from test runs [18].

Their main drawback of the algorithms mentioned above is
that these algorithms only work when the history of program
executions is known on the CI, i.e. to predict the execution
time on a certain CI, you need more than one run of the
program on this CI because the history of executions have
to consists of at least two executions. Besides above, in order
to build a program model or make test runs, you need the
source code and executable files, and this information is often
not available. In addition, almost all articles that consider the
prediction of the program execution time often considered only
for one CI. However, in the point of question of this paper it
has to be able to estimate the program execution time on a
set of CIs in that case when there is a minimum amount of
information about CIs and programs, actually available.

IV. DATA FOR PREDICTION MODEL

Information about programs (benchmarks) executions on
many CIs from the website spec.org was used for the ex-
periments presented in this article. This information was used
to form the matrix “Programs-Computers” PC, described in
Section II above. Three data sets with the execution results of
programs on different CIs are presented in [21], [22]:

1) MPIL2007 – 12 programs, 163 CIs;
2) MPIM2007 – 13 programs, 396 CIs.
3) ACCEL OMP – 15 programs, 25 CIs.
It should be taken into account that the data on the website

spec.org is constantly updated. The data are used in the
presented research dated April 8, 2020 12:13. The history
of changes can be viewed in [23]. The execution results of
OpenMP benchmarks running [22] were also used as a data
to form the PC matrix.

The problem formulated in Section II implies that the
program can be run with different arguments. However for the
simplicity reason we will assume that each program was run
only with one set of arguments, i.e. one program corresponds
to one row in the PC matrix. Note that this assumption does
not limit the generality of the proposed approaches.

Each entry in [21] and [22] was considered as a separate
CI. The used data was uploaded on Github [24].

V. PROPOSED SOLUTIONS

To solve the problem of the programs execution time pre-
diction (see Section II) the following algorithm was developed
(for brevity, only the algorithm scheme is presented):

1) Data preparation. Form a PC matrix of dimension N
by M ;

2) Execution time prediction. Applying one of the algo-
rithms described below:

a) Ridge. Using ridge regression [6] for each row
of the PC matrix. In other words the unknown
execution time on some CI was predicted from the
known execution times of the particular program
on all other CIs;

b) Cliques. Grouping CIs using the Pearson correla-
tion coefficient;

c) Decomposition. Apply matrix [20] or tensor de-
composition [32] of the PC matrix in order to fill
in empty entries of the PC matrix;

d) Apply an ensemble of algorithms: Ridge + Cliques
+ Decomposition;

3) Evaluation of prediction quality. The prediction of pro-
gram execution times is evaluated as follows:

a) For each program a prediction error is calculated
by the equation (1) specified in Section II;

b) The error average is a general prediction error.
As it was mentioned above each program was run only with

one set of arguments, i.e. one program corresponds to one row
in the PC matrix. For more information about the case when a
single program corresponds to multiple rows in the PC matrix,
see Section VII.



A. Computer installations grouping based on the Pearson
correlation

The Pearson correlation coefficient [19] characterizes the
presence of a linear relationship between two sets of numbers.
If the Pearson correlation between columns Ci and Cj is close
to 1 in modulus, then there is a linear relationship between the
execution times of programs on Ci and Cj CIs. Therefore, a
column with program execution times on the Ci CI can be
obtained by multiplying by a certain constant the column with
program execution times on the Cj CI.

The grouping procedure for CIs consists of the following
steps:

1) Calculate Pearson correlation for each pair of columns
of the matrix PC;

2) Build the graph of CIs. Each vertex represents one CI.
An edge between the Ci and Cj CIs exists if the Pearson
correlation between the corresponding columns in the
PC matrix is modulo greater than some threshold. The
value of threshold is an algorithm parameter;

3) Find all cliques [25] in the graph of CIs. Cliques search-
ing is NP-complete problem. To solve this problem
you can use the algorithm from [26]. To speed up the
experiments, a simplified cliques search algorithm was
implemented [24];

4) Each clique is a group of CIs with execution times of
each program are linear related, i.e. each pair of CIs in
such a group has execution times related by a specific
scalar coefficient. Pay attention that the same CI can fall
into several groups;

5) The resulting cliques are groups of CIs.
To search for cliques, the simplified algorithm was de-

veloped with complexity no bigger than N3 [24], which
is significantly less than the complexity of the algorithm
for searching for all maximum size cliques [26] – 3

N
3 . It

finds at least one clique for each vertex in the graph. The
disadvantage of the proposed algorithm is that it doesn’t find
all the maximum cliques. However, if threshold for the value
of Pearson correlation is close to 1, then further prediction
algorithm described below is pretty good even some vertexes
in the cliques would be missed.

Based on CIs grouping, the procedure for predicting pro-
gram execution time on the CI can be described as follows:

1) Select P – the program for execution time prediction;
2) Select C – the CI where P program will be run;
3) Determine the group that C belongs to;
4) If the CI doesn’t belong to any group of CIs, then make

a prediction using the Ridge Regression (See Section V,
point 2.a). Regression is applied for the entire row in
PC matrix correspond to the P program;

5) If the CI C belongs to a certain group, then there is a
clique in the graph of CIs, in which all the CIs, including
C, are connected to each other. This means that Pearson
correlation is greater than some given threshold for
each pair (CI C; some other CI from the clique –
C ′). Therefore, it’s possible to calculate the coupling

coefficient between the programs execution times for
two CIs from a pair;

6) Then multiply the P program execution time on the CI
C ′ on this coefficient. As result we get the estimate of
P program execution time on the considered CI C;

7) This procedure should be applied to each CI from the
clique, and then calculate the average of the execution
times. The average time is the estimation of the P
program execution time on the C;

8) If it isn’t possible to calculate Pearson correlation (e.g,
the considered program P hasn’t been run on any of the
CIs from clique), but corresponding row in PC matrix
for P program is non-empty then one need to use Ridge
Regression for the prediction. See Step 4. If the row for
P program is empty then method described in Section
VII is used.

The error of prediction for the algorithm presented above
can be estimated by the equation (1) from Section II.

B. Matrix decomposition and Tensor decomposition

The problem of filling empty entries in recommendation
systems is solved by matrix decomposition method [20]. We
propose to use the matrix decomposition technique to solve
the problem of programs execution time prediction.

The result of application matrix decomposition techniques
to some matrix is two or more matrices, the product of which
gives a matrix that approximates the original one. For empty
entries of the original matrix, i.e. for unknown values, the
product of the matrices gives values that estimate the unknown
values.
PC matrix decomposition allows one to get a vector rep-

resentations of programs and CIs, which have a remarkable
property: the scalar product of the vector representation of the
program and the vector representation of the CI is the program
execution time on the CI. Thus, the program execution time
can be divided into two components: one is related to the
program itself, the other to the CI.

The vector representations of programs and CIs is em-
beddings of programs and CIs. Embedding techniques and
methods of applying embeddings are very well known in
such areas as NLP [27], topic modeling [28], recommendation
systems [29].

The following matrix decomposition algorithms were used
to solve the problem of programs execution time prediction:
Singular Value Decomposition (SVD) [30], Alternating Least
Square (ALS) [31]. It was also used the tensor decomposition
algorithm [32], based on adaptation of SVD decomposition
for tensors.

As a result of experimental evaluation, the ALS algorithm
was selected as one with the minimum error (see equation (1)
from Section II.).

C. Ensemble of algorithms

In Sections 5.A and 5.B, algorithms for the program execu-
tion time prediction on a certain set of CIs were proposed.
These algorithms can be combined into an ensemble of



algorithms to improve the accuracy of the prediction [33].
In the article averaging ensemble [33] is used, where the
estimation for execution time calculated for each program, as
the average value of the execution time estimations of the
following algorithms:

1) Ridge Regression – Ridge;
2) CIs grouping based on the Pearson correlation – Cliques;
3) Matrix decomposition by the ALS algorithm – Decom-

position.

VI. EXPERIMENTS

In this section the results of experimental studies of the
algorithms proposed in Section V are presented.

The purposes of the experiments are analysis of the quality
of prediction results:

1) based on grouping CIs by the Pearson correlation;
2) based on ALS matrix decomposition algorithm. Select-

ing the parameter K – the number of components in the
vector representation of programs and CIs (see Section
V.B);

3) by the ensemble of algorithms;
4) by the proposed algorithms with outliers in the source

data.
Data
The data sets described in Section IV were used in experi-

ments. These data sets were used to form the PC matrix.
The experimental technique
Implemented algorithms [24] were run with different data

sets during experimentation.

A. Analysis of the quality of prediction based on grouping
computer installations by Pearson correlation

Data set MPIM2007 (see Section IV) with 13 programs and
396 CIs were used for the experiments.

The algorithm based on grouping CIs by Pearson correlation
is very sensitive to the presence of outliers in the data, as well
as to what extend the PC matrix is low-density. In order to
analyze the quality of prediction by this algorithm for each
entry of the PC matrix, an execution time prediction was made
using information from the remaining entries of this matrix.
Thus, only one value was removed from the matrix, and then
the algorithm described in Section V.A was applied. Results
are presented in the Table I.

TABLE I
RESULTS OF THE PREDICTION BASED ON GROUPING COMPUTER

INSTALLATIONS BY PEARSON CORRELATION

Groups with Prediction Average
Exp. Corr. Groups size 1 Error

1 - - - Regression 0.25
2 0.97 46 27 In groups 0.068
3 0.97 46 27 In groups + 0.115

Regression

3 experiments (Exp.) were made by following steps:

1) Correlation (Corr.) is the threshold for Pearson correla-
tion coefficient module. It’s necessary to build a graph
of CIs, see Section V.A;

2) Number of groups (Groups) is the number of cliques in
graph of CIs;

3) Number of groups with size 1 (Groups with size 1) is
the number of cliques only with one CI;

4) Prediction – “Regression” – prediction a value in re-
moved entry by applying of Ridge Regression to re-
maining elements in row; “In groups” – prediction in
groups according to the algorithm described in Section
V.A, groups with only one CI aren’t considered in this
case; “In groups + Regression” – prediction execution
time in groups with size more than 2, to other CIs used
Ridge Regression;

5) Average error – after each removing a value from the
matrix entry, a prediction is made, and the prediction
error is calculated by equation (1) from Section II. After
that for all entries the arithmetic mean of prediction
errors for all entries of the matrix is calculated.

According to the results presented in Table I, the algorithm
for programs execution time prediction based on grouping of
CI by Pearson correlation gives a prediction error on dense
matrices of 11.5% (only single empty entry in PC matrix).
Also the results in Table I shows that the number of groups
with size 1 is quite large, therefore the prediction error with
and without them differs almost twice: 11.5% and 6.8%
respectively.

B. Analysis of the quality of prediction based on ALS matrix
decomposition algorithm

Data set MPIM2007 (see Section IV) with 13 programs and
396 CIs used for the experiments.

To study the quality of prediction based on ALS matrix
decomposition algorithm 4 experiments were made: ALS
matrix decomposition of PC matrix with K = 1, 2, 3, 4. K is
ALS algorithm’s parameter: the length of vector representation
of program and CI. The results of the decomposition were
compared with each other, as well as with Ridge regression
algorithm that was chosen as the basic prediction algorithm.

The Fig. 1 contains graphs of the relationship between the
prediction error and the percentage of empty entry in the
PC matrix for Ridge regression and ALS algorithm with
different K = 1, 2, 3, 4. Prediction error for the algorithms
was calculated using the equation (1) from Section II. In
Fig. 1 X-axis is the percentage of empty entries in the PC
matrix (which randomly was removed from it), Y -axis is the
prediction error. In the following figures the axises has the
same meaning. Some values from X-axis were removed for
readability.

According to the Fig. 1 using the matrix decomposition
technique (by comparison with Ridge and Cliques) with
K = 1 gives the best results for sparse matrices in which
the number of empty entries is more than 15%. Graph for
matrix decomposition with K = 1 is the lowest in the Fig. 1.
Even if 80% of the entries are removed from the PC matrix,



Fig. 1. Ridge regression and ALS matrix decomposition with K=1,2,3,4.

it can be filled in so that the execution time will deviate by
no more than 60% from its true value.

Thus, as a result of experiments, we can conclude that the
technique of matrix decomposition with the parameter K = 1
gives the best solutions when the percentage of empty entries
in the PC matrix is more than 15%.

An important advantage of usage the matrix decomposition
technique is the following. The result of applying this tech-
nique is vector representations (embeddings) of programs and
CIs. These embeddings have dimension 1! This means that you
can enter total ordering on the performance on a set of CIs. The
less embedding a particular CI has, the less time the program
will run on it. This follows from the fact that for K = 1,
the program execution time on a specific CI is calculated as
the product of two numbers: the program embedding and the
embedding of the CI.

C. Analysis of the prediction quality of an ensemble of algo-
rithms

The ensemble of algorithms is described in Section V.C. The
ensemble includes the following algorithms: Ridge, Cliques
and ALS. The simple arithmetic mean of the prediction results
of the Ridge, Cliques and ALS algorithms was considered. All
three data sets – MPIL2007, MPIM2007 and ACCEL OMP
(see Section IV) were used for the experiments.

The Fig. 2 shows that the ALS algorithm gives the best
results in all cases when percentage of empty entries in PC
matrix is more than 14%. The Fig. 3 shows that ensemble of
algorithms gives the best results after 14% up to 93%.

To test the ensemble of algorithms another experiments was
conducted on the data set ACCEL OMP with 15 programs
and 25 CIs. Due to small size of PC matrix – 15 programs,
25 CIs – different algorithms give better results for different
percentage of empty entries in PC matrix. It’s difficult to
distinguish the dominance of any one algorithm. The Fig. 4
shows that first the best result is given by ALS (up to 19%),
then ensemble (from 19% to 56%), then ALS (from 56% to
83%), then the ensemble again (from 83% to 92%).

Fig. 2. Results of Ridge, Cliques, Decomposition and an ensemble of
algorithms on MPIL2007 (1%-93%).

Fig. 3. Results of Ridge, Cliques, Decomposition and an ensemble of
algorithms on MPIM2007 (1%-93%).

D. Analysis of the prediction quality of the proposed algo-
rithms in the presence of outliers in the source data

One more experiment was conducted to test the stability
of each algorithm to outliers. For the experiments, the PC
matrix was formed, after that 10% of its entries were randomly
selected and multiplied on a random number in the interval
(0, 10).

The Fig. 5 shows the results of a prediction based on data
with outliers. As you can see from the Fig. 5 the ensemble of
algorithms is almost always better than all other algorithms.



Fig. 4. Results of Ridge, Cliques, Decomposition and an ensemble of
algorithms on ACCEL OMP (1%-92%).

Fig. 5. Results of Ridge, Cliques, Decomposition and an ensemble of
algorithms on MPIM2007 (1%-92%), 10% of outliers, coefficient from 0
to 10.

The Cliques algorithm also gives a good result up to 19% of
the percentage of empty entries.

E. Conclusions from the experiments

Experiments showed that an ensemble of algorithms with
a small percentage of empty entries in “Program-Computer”
matrix makes a better prediction compared to all other algo-
rithms. Also, the ensemble and ALS show good results even
in the presence of outliers in the source data sets. Thus, for
dense matrices, it is better to use an ensemble of algorithms,
for sparse ones – matrix decomposition, in particular the ALS
algorithm.

VII. EXECUTION TIME PREDICTION APPLICATION

Based on the research presented above the following al-
gorithm was constructed for solving the problem of efficient
resource allocation in a cloud computing environment over a
heterogeneous network of computers:

1) Create a PC matrix based on the history of finished
program executions;

2) Fill in empty entries in PC matrix using one of the
algorithms described in the article (see Section V);

3) Knowing the estimated programs execution times on CIs
apply one of the algorithms below:

a) Greedy algorithm. Send the current program to the
CI where it has the minimum execution time. If this
program hasn’t been executed anywhere else, it can

be placed on the most powerful CI. Performance
can be determined by the embedding of the CI (see
Section V);

b) Build a schedule. If one plan the calculation for
multiple programs, one can create a schedule for
running Programs that minimizes the total execu-
tion time [7].

In the experiments presented in Section VI, each program
had only one set of arguments and only one row in the PC
matrix corresponded to it. Such data was considered to for
simplicity of studying the quality of the created algorithms.
However, the developed algorithms can be easily applied for
the case when each program was run several times.

There are at least two ways to apply the described algo-
rithms in this case. First – form a PC matrix as described in
Section II, then apply the algorithms proposed in this article
in Section V. The second method is as follows. First make
predictions based on the history of the program executions on
a single CI [14], [15]. This way, you can fill in the empty
entries in the columns. Then the algorithms proposed in this
article in Section V are applied to fill the remaining empty
entries.

VIII. CONCLUSION

This article describes algorithms for predicting the programs
execution time on the federation’s computer installations that
meet the requirements of the virtual infrastructure. Existing
algorithms for predicting program execution time use the
history of executions to make a prediction. The main drawback
of existing algorithms is that the algorithms work only within a
single computer installation, i.e. to predict the execution time
on a certain computer installation, you need more than one
start of the program on this computer installation – that is,
you can’t do without the history.

In this paper, a new approach that allows to predict the
program execution time on a certain computer installation was
proposed, even when it was not executed on it. Two algorithms
were constructed and analyzed: an algorithm based on com-
puter installations grouping based on the Pearson correlation
coefficient (for cases when the program was executed on al-
most all federates in the federation) and an algorithm based on
matrix decomposition technique, which allows to obtain vector
representations (embeddings) of the program and computer
installations (for cases when the Program was executed only
on a small subset of federates). Matrix decomposition, which
was used to predict the programs execution times, is actively
used in the field of recommendation systems, for example,
SVD decomposition [30], ALS [31] and tensor decomposition
[32]. In the article, for the first time, it is proposed to use this
technique for the problem of predicting the programs execution
time on an set of computer installations.

In addition, an ensemble of algorithms consisting of Ridge
regression, grouping computer installations based on Pearson
correlation coefficient, and matrix decomposition was pro-
posed. It is shown that the ensemble of algorithms is more



resistant to outliers than other algorithms and gives the best
results on dense matrices.

Embeddings of programs and computer installations were
obtained as a result of matrix decomposition of the matrix
”Programs-Computers”, where value in each entry is the
program execution time on the computer installation. This
approach to obtaining embeddings is widely used in many
areas, for example, in recommendation systems [29], in the-
matic modeling [28]. This approach was successfully applied
in solving the problem. The approach proved to be universal,
as similar results were obtained for MPI benchmarks and
OpenMP benchmarks (see experiments in Section VI).

It is important to emphasize that the proposed approach
to predicting program execution time requires a minimal set
of data about the program, which is usually available on all
modern computer installations. Another important advantage
of the proposed approach is that a result of matrix decomposi-
tion is the embeddings of programs and computer installations
of dimension 1. This fact allows one set up the total order as
on a set computer installations as on a set of programs what
significantly help to properly select the computer installation
with effective execution time.

The final remark is as a hypothesis we state that execution
time prediction techniques proposed in this article one can
apply not only to MPI programs.
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