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Abstract: New method of 1-D to 2-D transformation of timeriss or one-
dimensional signals was proposed. The method ssdoas a binary transformation of
the time series. Resulting binary points are carsid as interacting pseudo particles.
The transformation is carried out using moving vawd In each position of moving
window, the pseudopotential is calculated and i@wr in the central point of moving
window. Two pseudopotentials were considered: Isspin-spin potential and
Coulomb potential. Both potentials equally well clése the features of time series
dynamics. Potential calculations were carried odiféerent values of the width of the
sliding window. The resulting potential curves wgreuped together to create 2-D
images. This 1-D to 2_D transformation was compangith continues wavelet
transform (CWT). The comparison showed that poaémtansformation gives more

detailed information of hidden patterns then CWT.
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Introduction. One dimensional time series (TS) are the disgetpiences of
different kind objects. Let us consider numeriaalet series (NTS). Relative location



of points inside NTS may be considered as one-dsineal pattern. Two-dimensional
gray scaled images are two-dimensional patteriytefs. From the classical point of
view TS is usually considered as addition of regsignal and noise [1]. In such
approach the main problem is to get rid of noise sdlve the problem, one can use
smoothing algorithms [2] and filters. Various infeation may be obtained using the
continues or discrete wavelet transform [3-5]. @urds wavelet transformation
(CWT) is the transformation of TS from 1-D to 2-[@presentation. Thus, this
transformation widens the horizons of TS analyBiscreet wavelet transformation
(DWT) separates TS into several parts: approximadiod details [3-5] Our point of
view is that noise patterns sometimes contain sggmtly useful information. Patterns
are mosaic of relative location of TS points. $camalyze patterns one needs distance
calculation. In image processing the distance toamsation (DT) is widely used as a
useful tool for pattern analysis [6]. DT proved be useful in many practical
applications. There are many different methodsdisince measures which are used
in DT calculations. Euclidian DT (EDT) is one oftlpopular distance measure [7].
The drawback of EDT algorithms is that EDT alganthare slow-speed leading to
different problems. For example, the problem ofspabject representation in discrete
geometry. This problem was considered using DB]nThe DT algorithm was also
used in [9] for automatic pattern recognition. Th& algorithm complexity was
analyzed in [10], in which several effective algoms were developed: Linear-time
Legendre transform (LLT) algorithm, the parabolwelope (PE) algorithm and non-
expansive proximal mapping (NEP) algorithm. It wasown in [10] that these
algorithms have linear complexity and may be eitety used for DT processing of
images. Nowadays the high-speed parallel compatimtg GPU computing are often
used in DT calculation [11]. DT is useful in mamagtical applications. For example,
in medical application DT is one of best meangdiscovering the similarity in image
series [12]. It is rather important for inner orgastice-by-slice image analysis. Good
results were obtained using together watersheditdgoand DT for blood cell image
segmentation [13]. Watershed algorithm needs gedgsmages. In [13] DT transform

was used to transform binary image to gray-scajar Bistance measures were used:



EDT, city-block, chessboard and quasi-Euclideanvds found that chessboard DT
measure had best results in watershed segmentation.

In our present work we used DT for so called pspotential calculation. Let us
assume that normalized TS was binarized, for exanapl 0.5-level. Let us call points
for whichf(x) > level as “white” points, otherwise “black” poirSometimes they are
called feature or background points. The “white’'int® in binary image may be
considered as pseudo particles. These particlegeceseudopotential field which
value may be put into the central pixel of movingadow (MW). In one pass of MW
on the time series we get one potential curve spoeding to the chosen width of
MW. By grouping together these curves for differegiues of MW-width one obtains
1-D to 2-D transformation of TS. This transformatis like wavelet transform but has
different nature. While wavelet depends on onerpatar, potential transform depends
of whole points configuration. We considered twads of pseudopotentials: Ising
spin-spin interaction potential [14] and Coulombkgmial. Other kinds of potential
may be considered, for example, and Lennard-Jantesitpal [15,16] or Tersof [17] or
Morse [15,16] potential.

Potential transformation

For potential transform one needs the TS prelingipancessing and binarization.

1. Preliminary processing.

1.1. The first step of preliminary processing is tamoval of trend. It is possible
to model trend using both local or global smoothongpproximation. In our study we

used local spline regression. We get the detrem&eas followsv, =a, - f (a), where
a - initial TS, f (&) - trend.

1.2. Second step is the removal of outliers. inportant to remove the outliers
because they are more anomalies and are not rétetteel patterns. To remove outliers
we use the following algorithm: (a) calculation global average and standard
deviation; (b) deleting from TS points with valugseater then, two standard

deviations: k =arg(lv, $ &), v, = [, where [ ] — means “deletely - standard

deviation; (c) new calculation of global averaged astandard deviation; (d)



v +30

normalization of resulting T, = , Where o - new standard deviation

(normalization transforms TS intenat3o,30] - [0,1]); (e) additional normalization

U, = U,
as follows: x, =—x——min_

Unax =~ Umin
2. Binarization
Binarization is the transformation of TS into byaoints

q:f’&>“. )

0, otherwise

whereL — binarization level.

Let us name points, for whidj =1 “white” points and otherwise “black” points.

3. Potential transformation

The potential transformation is performed usingated moving window (MW).
The MW moves along TS from one point to anothee pbtentials are calculated only
for “white” binary points inside MW. In the presemtork we used two kinds of
potential: distance dependent potentials (Coulootbngial) and distance independent
Ising spin-spin potential [14].

3.1.Ising potential transform (1PT)

In Ising model the spin-spin interaction is consadeonly between nearest spins

[14]. Let us assume that “white” points have s@irr1 and “black” points have spin
S =-1. The total Ising potential is equal to the sumpratof all two-particle

interactions:

J D> §§=J > bb, rysR

U Ising (C) =J (t,gMw) (t.aOMW) @)
0, otherwise

where:MW — moving window;c — central point of moving window; q — “white”

points inside moving windowr, - distance between poirttandg; R — limits of Ising

interaction;J — energy constant (in calculatidr= 1).
In every position of MW, the total potential of spnteraction between particles is

assigned to central point. The resulting TS wakeddsing potential transform (IPT).



If R=w (width of MW), thenU g, (c) =%ntq(n[q -1), wheren,, is the number

of “white” points inside MW.
3.2.Coulomb potential transform (CPT).

The algorithm (CPT-algorithm) uses total Coulomkiemtial of interactions

between “white” binary points) (p) =YV (r; ) = Zi where:r; - distance between

i<j i<j fij

two binary points. We compute the total interacti@tween “white” points as follows:

1
U (C) = Z PR (3)
Al =]
where:G={i# j #c; i, j,cOMW} MW — moving windowg — central point of moving
window.

Other kinds of potential may be used, for exampknnard-Jones potential

[15,16]:
12 6
4¢ z - z ) rij <rc
u (rii ) = i f (4)

0, otherwise
wherer; - distance between binary points,o - potential parameters, — cut off

distance (potential limits). The parametatefines the strength of the interaction and
o is a length scale. The interaction repels pointsl@se range, then attracts, and is
eventually cut off at some limiting distance

Assumings =1, o =r,=w and takingd as half MW width we get the following

calculating equation for total Lennard-Jones padént

gl 4]

wherew — is the width of moving window.
We assume that using another kind of particle intemactor example, the Morse

potential or Tersoff potential [15-17], one may get another higaéern.



For each position of MW, the potential values of diffet@ntry slices constitute
potential vector. We used this vector for statistical aadi calculation which we
consider as TS structure signatures. We calculatealibaving normalized statistical
indices:

Each individual potential curve corresponding to a chosen winvddith may be
analyzed using following statistical indices:

Normalizes average:

1 n
— 2.0
Nz

—F (6)
max(|

T):

wherep — potential vectom — number of TS points.

Normalized standard deviation:

i=1 y (7)

Normalized skewness:

K= , (8)

Normalized kurtosis:

Ku=—Hd . 9)

Results

As example for potential transformation let us ¢coastime series of stock prices
of platinum of London Metal Exchange. The data wedained on the website
https://www.quandl.com/data/LMH he data cover the interval from 1990 to 2018.

Fig.1 show the initial TS and its spline approxiioat



Spline appraxamation: LPPM-PLAT csv
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Fig.1. Initial TS — black and spline approximatiored: stock prices of platinum of
London Metal Exchange from 1990 to 2018

Big outlier is located near 2500 day. Next stepremd removal. The resulting

detrended TS is shown in Fig.2.



Detrended TS: LPPM-PLAT csv
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Fig2. Detrended TS.

It is clear from Fig.2 that outlier problem is rsoived. Clearing detrended TS and

normalizing it as is described in section 1.2 wedlgared TS shown in Fig.3.

Normilized stock prices

Normalized TS: LPPM-PLAT csv TS histogramm (absolute frequencies): LPPM-PLAT csv
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Fig.3. Normalized cleared TS and its histogram

Cleared TS was used in potential calculation. Onth@ Ising potential curves

and one of the Coulomb potential curves are showiig.4.



Potential curve {potential transform): LPPM-PLAT .csv
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Fig.4. Potential curves for d = 200: a — Ising ptitd; b — Coulomb potential

As it is clear from Fig.4 the curves are very sanilPotential values, of course,
are significantly different but both potentials afijywell describe the specific features
of time series dynamics. Small differences take@la the magnitude of the peaks

which is may be due to the different scales ofcinees.

Let us consider results of 1-D to 2-D potentiahsfarmation. Corresponding

images are shown in Fig.5. For comparison in FEEV8T is shown.

Ising potentialtransform, d=5:5:200, w=R
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Coulomb potential-transform, d=5:5:200
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Fig.5. TS potential transformation: a — Ising paianb — Coulomb potential

Continuous Wavelet Transform: LPPIM-PLAT
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Fig.6. Continues wavelet transform of time serl@aubechies wavelet was used)



From the comparison of Fig.5 and Fig.6 follows tB&VT do not show specific
features of time series as clear as potential foamstions. So, the potential
transformation may be considered as effective amtdit tool to wavelet analysis.

Conclusion

New method of analysis of time series was proposkd.method uses potential
transformation of time series. The essence of theenpial transformation is the
following. The first is the binarization of the terseries. As a result, points are divided
into two classes. Points of each class were coresidas interacting pseudo particles.
The potential is calculated for the interactiondmstn points of one of the two classes.
The potential was calculated using two interactidamg spin-spin interaction and
Coulomb interaction. Moving window was used to oldte the potential value for
every point of time series.

The results show:

1. Both potential transformations give similar fesu

2. Specific points of the time series are bettetected by a potential

transformation than by using continues waveletsi@m.
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