
EasyChair Preprint

№ 472

A Coq mechanised formal semantics for realistic

SQL queries : Formally reconciling SQL and

(extended) relational algebra.

Véronique Benzaken and Évelyne Contejean

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 30, 2018

A Coq mechanised formal semantics for realistic SQL
queries∗

Formally reconciling SQL and bag relational algebra

V. Benzaken
Université Paris Sud, LRI
veronique.benzaken@lri.fr

É. Contejean
CNRS, Université Paris Sud, LRI

evelyne.contejean@lri.fr

Abstract
In this article, we provide a Coq mechanised, executable,
formal semantics for realistic SQL queries consisting
of select [distinct] from where group by having
queries with NULL values, functions, aggregates, quanti-
fiers and nested potentially correlated sub-queries. We
then relate this fragment to a Coq formalised (extended)
relational algebra that enjoys a bag semantics. Doing
so we provide the first formally mechanised proof of the
equivalence of SQL and extended relational algebra and,
from a compilation perspective, thanks to the Coq ex-
traction mechanism to Ocaml, a Coq certified semantic
analyser for a SQL compiler.
ACM Reference format:
V. Benzaken and É. Contejean. 2016. A Coq mechanised
formal semantics for realistic SQL queries. In Proceedings of
Université de Paris Sud, Orsay, France, July 2018 (Research
Report), 12 pages.
DOI: 10.475/123 4

1 Introduction
In the area of programming languages, providing a formal
semantics for a language is a tricky but crucial task as
it allows compilers to rigorously reason about program
behaviours and to verify the correctness of optimisa-
tions [17, 23]. When considering real-life programming
languages the task becomes even harder as it happens
that the specifications of the language are often written
in natural language. Even when they are formal, they
only account for a limited subset of the considered lan-
guage and are, most of the time, human-checked proven
correct. In all cases, there are few strong guarantees that
∗Work funded by the DataCert ANR project: ANR-15-CE39-0009.

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for third-party components of this work
must be honored. For all other uses, contact the owner/author(s).
Research Report, Orsay, France
© 2016 Copyright held by the owner/author(s). 123-4567-24-
567/08/06. . . $15.00
DOI: 10.475/123 4

the whole faithfully accounts for the exact semantics and
correctness of performed optimisations. To obtain such
high level guarantees, a promising approach consists in
using proof assistants such as Coq [25] or Isabelle [26] to
define mechanised, executable semantics whose correct-
ness is machine-checkable.

A shining demonstration of the viability of this ap-
proach for real systems is Leroy’s CompCert project [20],
which specified, implemented, and proved the correct-
ness of an optimising C compiler. This compiler is not a
toy: it compiles essentially the whole ISO C99 language,
targets several architectures, and achieves 90% of the
performance of GCC’s optimisation level 1. The value
of CompCert’s correctness proofs has surprised some ob-
servers. Quoting [27] that used random testing to assess
all popular C compilers: “The striking thing about our
CompCert results is that the middle-end bugs we found
in all other compilers are absent. As of early 2011,
the under-development version of CompCert is the only
compiler we have tested for which Csmith cannot find
wrong-code errors. [...]. The apparent unbreakability
of CompCert supports a strong argument that develop-
ing compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.”

Our long-term goal, based on the same approach,
aims at providing a Coq verified compiler for SQL, the
standard in terms of programming languages for rela-
tional database systems. In this article we focus on
semantical issues and define, using Coq, a formal se-
mantics for SQL. More precisely, we define SQLCoq

(syntax and semantics), a Coq formalisation of SQL
accounting for select [distinct] from where group
by having queries with NULL values, functions, aggre-
gates, quantifiers and nested potentially correlated sub-
queries. In order to convince ourselves that SQLCoq fairly
reflects SQL’s semantics we developped a query gener-
ator that serves to automatically generate and execute
queries against mainstream systems such as Postgresql,
Oracle™, and also against SQLCoq. Obtaining the same
results we hence give strong credibility of the (seman-
tic) relevance of SQLCoq. Doing so, we provide a Coq
certified semantic analyser for the compiler. We then

Research Report, July 2018, Orsay, France V. Benzaken and É. Contejean

formalise, using Coq, SQLAlg, a bag, environment-aware
relational algebra similar to, while extending it, the one
presented in [12]. Next, we formally relate, through
a Coq mechanised translation, SQLCoq to SQLAlg and
vice-versa. By proving an adequacy theorem stating that
these translations preserve semantics, we provide the
first, to our best knowledge, mechanised, formal proof of
equivalence between the considered SQL fragment and
a bag relationnal algebra.

Related works Many attempts have been made by the
database community to define a formal semantics for
SQL. Among those, proposals can be found in [7, 22]
where the authors presented a translation from SQL to
an extended algebra. A credible subset of SQL (with
no functions symbols, nested queries, NULL’s nor bags
though) was addressed. The first formal semantics for
SQL accounting for NULL’s and bags is found in [16].
However, the work did not consider group by having
clauses, aggregates nor complex expressions: their ex-
pressions consist of attributes’ names or constants. As
will be shown in Section 2 and 3, the treatment of com-
plex expressions is very subtle.

On the proof assistant side, the first attempt to for-
malise the (unnamed version of) the relational data
model, using the Agda proof assistant [24], is found
in [13, 14] while the first, almost complete, Coq for-
malisation of the relational model is found in [4] where
the data model, algebra, tableaux queries, the chase as
well as integrity constraints aspects were modelled. A
convincing mechanisation, based on nominal Isabelle,
of a subset of XQuery [19] is given in [8]. Recently, an
SSreflect-based mechanisation of the Datalog language
has been proposed in [5]

The very first attempt to verify, using Coq, a RDBMS
is presented in [21]. However the SQL fragment they
addressed was rather unrealistic as, probably for the sake
of simplicity, they placed themselves in the context of
an unnamed version of the language in which attributes
were denoted by positions. They did not consider group

by having clause, neither NULL’s nor aggregates.
More recently, a Coq modelisation of the nested re-

lational algebra (NRA [10]) which directly serves as a
semantics for SQL is provided in [2]. Finally, the closest
proposal in terms of mechanised semantics for SQL is
addressed in [9]. The authors describe a tool to decide
whether two SQL queries are equivalent. To do so, they
defined HottSQL, a K-relation [15] based semantics for
SQL. Unlike ours, the considered fragment does not
handle NULL values nor having clause and they used a
reconstruction of the language thus not accounting for
the trickier aspects of variable binding. As we shall see in
Section 2 and 3 the treatment of attributes’ names and
more generally environments is particularly a tough task.

Furthermore, they relaxed the finite support constraint
imposed to K-relations hence possibly yielding infinite
query results as well as potentially infinitely many oc-
curences of tuples in queries’ results. Last, and more
importantly, their semantics is not executable hence it
is impossible to verify whether they do implement the
correct SQL’s semantics.

Unlike those works we propose (i) a bag mechanised
executable semantics for the realistic subset of SQL pre-
viously mentionned. (ii) By relating this fragment to
a Coq formalised relational algebra that enjoys a bag
semantics we provide (iii) the first formally mechanised
proof of the equivalence of SQL and algebra and, from
a compilation perspective, thanks to the Coq extrac-
tion mechanism to Ocaml, (iv) a Coq certified semantic
analyser for a SQL compiler.

Organisation In Section 2, we first present SQL’s sub-
tleties that are mandatory to be taken into account to
provide a realistic semantics. Then we detail, in Sec-
tion 3, SQLCoq’s syntax and semantics and comment
on our experimental assessment thanks to our random
query generator. Section 4 is devoted to the mechanisa-
tion of SQLAlg, the bag algebra. Then the translations
between SQLCoq and SQLAlg as well as the equivalence
theorem are presented. We conclude, draw lessons and
give perpectives in Section 5.

2 SQL: simple and subtle
SQL is a declarative language. As such it is often con-
sidered simple. However, its semantics is more subtle
than appears at first sight. SQL’s semantics is described
by the ISO Standard [18] which consists of thousand
pages written in natural language. It is often unclear
and, thus, cannot serve as a formal semantics. This
explains why many vendors implement various aspects
of it in their own way as witnessed by [1]. Although
the Standard cannot serve as a formal specification, we
relied on it and, meanwhile, we tested our development
against systems like Postgresql and Oracle™ to better
grasp SQL’s semantics.

It is well known that SQL’s select from where con-
struct enjoys a bag semantics: the same tuple can occur
several times in the result. Purely set-theoretic oper-
ators such as ∪ (union), ∩ (intersect) and \ (except)
have a set-theoretic one. Therefore any formal semantics
must account for both sets and bags. As pointed out in
Guagliardo et al., in [16], SQL deals with NULL values
that are intended to represent unknown information. A
3-valued logic combined with the classical Boolean logic
is used to handle them (even if 3-valued logic is not nec-
essary as shown in [16] but in the absence of quantifiers).
However NULL’s are not treated in a uniform way accord-
ing to the context as illustrated in Section 2.1. Last, and

A Coq mechanised formal semantics for realistic SQL queries Research Report, July 2018, Orsay, France

r
a
1

NULL

s
a

NULL

t
a
1

NULL
NULL

t1
a1 b1
1 1
1 2
1 3
1 4
1 5

a1 b1
1 6
1 7
1 8
1 9
1 10

a1 b1
2 1
2 2
2 3
2 4
2 5

a1 b1
2 6
2 7
2 8
2 9
2 10

a1 b1
3 1
3 2
3 3
3 4
3 5

a1 b1
4 6
4 7
4 8
4 9
4 10

t2
a2 b2
7 7
7 7

-- q1
select r.a from r where r.a not in (select s.a from s);
-- q2
select r.a from r where

not exists (select * from s where s.a = r.a);
-- q3
select r.a from r except select s.a from s;
-- q4
select t.a,count(*) as c from t group by t.a;
-- q5
select a1, max(b1) from t1 group by a1;
-- q6
select a1 from t1 group by a1 having
exists (select a2 from t2 group by a2 having sum(1+0*a1) = 10);
-- q7
select a1 from t1 group by a1 having
exists (select a2 from t2 group by a2 having sum(1+0*a2) = 10);
-- q8
select a1 from t1 group by a1 having
exists (select a2 from t2 group by a2 having sum(1+0*a2) = 2);

-- q9(k)
select a1 from t1 group by a1 having
exists (select a2 from t2 group by a2 having sum(1) = k);
-- q10
select a1 from t1 group by a1 having
exists (select a2 from t2

group by a2 having sum(1+0*a1)+sum(1+0*a2) = 12);
-- q11(k)
select a1 from t1 group by a1 having
exists (select a2 from t2 group by a2 having sum(1+0*a1+0*a2) = k);
-- q12
select a1 from t1 group by a1 having
exists (select a2 from t2 group by a2 having sum(1+0*b1+0*b2) = 10);
-- q13(k)
select a1 from t1 group by a1 having
exists (select a2 from t2 group by a2 having sum(1+0*a1+0*b2) = k);
-- q14
select a1 from t1 group by a1 having
exists (select a2 from t2 group by a2 having sum(1+0*b1+0*a2) = 12);

Figure 1. Semantically subtle queries.

more importantly, as illustrated in Section 2.2, the way
SQL manages environments and expressions is complex
and represent the most tricky aspect to address in order
to obtain a formal semantics for realistic SQL queries.
In the sequel of this section, we note [[q]] the result of the
evaluation of query q, (), the tuple constructor, [] the
list constructor, { } the set constructor and {| |} the bag
constructor. Figure 1 gathers a bunch of queries that
will illustrate SQL’s most subtle aspects.

2.1 NULL values
The three first queries are borrowed from [16]. They
examplify the fact that NULL is neither equal to nor
different from any other value (including itself): com-
paring NULL with any expression always yields unknown.
Query q1 returns an empty result. This is explained
by the fact that [[select s.a from s]] = {|(s.a=NULL)|},
hence over all tuples (r.a=x), in particular over (r.a=1)
and (r.a=NULL), [[r.a not in select s.a from s]] yields
not unknown, that is unknown, which is eventually consid-
ered as false, as remarked by Guagliardo et al., in [16].
Neither tuple belongs to the result of the first query.

Query q2 returns {|(r.a=1); (r.a=NULL)|}. Let subq2 be
(select * from s where s.a = r.a), it yields an empty
result over all tuples (r.a=x), hence [[exists (subq2)]] is
always false and [[not exists (subq2)]] is always true,
thus (r.a=1) and (r.a=NULL) are in the result of q2.

Query q3 returns {(r.a=1)}, because the set difference
does not use 3-valued logical equality, but standard
syntactic equality. Here both tuples (r.a=NULL) and
(s.a=NULL) are equal.

Last, query q4 returns {|(t.a=NULL,c=2); (t.a=1,c=1)|}.
This illustrates the fact that NULL, which is neither equal
nor different from NULL in a 3-valued logic, is indeed
equal to NULL in the context of grouping. The semantics
proposed in Section 3.2 will account for such behaviours.

2.2 Expressions in environments
Let us now address the way SQL manages evaluation
environments in presence of aggregates and nested cor-
related queries. In order to evaluate simple (without
aggregates) expressions, it is enough to have a single
environment, containing information about the bounded
attributes and the values for them. In this simple case
(e.g., select a1, b1 from t1;) such an environment cor-
responds to a unique tuple (a1=x,b1=y) where x and y
range in the active domains of a1 and b1 respectively.

Evaluating expressions with aggregates is more in-
volved, since an aggregate operates over a list of values,
each one corresponding to a tuple. The crucial point
is to understand how such a list of tuples is produced.
Section 10.9 of [18] (< aggregate functions >, how to
retrieve the rows – page 545) should provide some guid-
ance in answering this question. Unfortunately it was
of no help. We thus proceeded by testing many queries

Research Report, July 2018, Orsay, France V. Benzaken and É. Contejean

over Postgresql and Oracle™. It took us significant effort
to reach the semantically relevant set of queries which
are given in Figure 1. For all of them, we obtained the
same results on both systems. Let us comment on these
queries. For q5 the result is:{∣∣∣∣ (a1=1,max=10); (a1=2,max=10);

(a1=3,max=5); (a1=4,max=10)

∣∣∣∣}
It is easy to understand what happens when evaluating
max(b1) in q5: each group (where a1 is fixed) contains
some tuples, each of them yielding a value for b1. Then
max is computed over this list of values. For instance,
the group T1 where a1=1 contains exactly one occurence
of tuples of the form (a1=1,b1=i), where i ranges from 1
to 10, hence b1 ranges from 1 to 10, and max(b1) is equal
to 10, whereas the group where a1=3 contains tuples
(a1=3,b1=i), where i=1,...,5, and max(b1) is equal to
5. In this simple case a group of n tuples merely yields
n simple environments each of them consisting of a
single tuple – we say that the group has been split into
individual tuples.

The situation gets more complex when evaluating an
aggregate expression in a nested sub-query. How to build,
in that case, the suitable list of environments (tuples) in
order to get the needed list of values as arguments of the
aggregate itself? Assuming that an aggregate expression
occurs in a subquery under more than two grouping
levels, there are several groups in the evaluation context.
How to combine them in order to obtain the correct list
of tuples? Which groups have to be split into and which
have not to? Queries q6,q7,q8,q9,q10,q11,q12,q13 and
table t2 have been designed to answer these questions.

Query q6’s result is {|(a1=1); (a1=2)|}. This means
that subquery select a2 from t2 group by a2 having
sum(1+0*a1)=10 is not empty when a1=1, a1=2, and is
empty when a1=3 and a1=4. For a1=1, this subquery
is evaluted under the context of group T1 seen above
for q5. This indicates that expression sum(1+0*a1) is
evaluated to 10 in the context of both outer group T1 and
inner group T2 = {|(a2=7,b2=7); (a2=7,b2=7)|}. Hence,
the relevant evaluation context of sum(1+0*a1) in [T2;T1]
has to contain 10 tuples, each of them contributing by
1+0*a1, that is 1, to the sum. A simple reasoning about
groups’ cardinality allows to conclude that group T1 has
been split into, and not T2.

Let us now consider q7. While very similar to q6,
except that the sum is over 1+0*a2, [[q7]] is empty, meaning
that the evaluation context of sum(1+0*a2) in [T2;T1]
does not to contain 10 tuples. How many tuples does it
actually contain? An educated guess is 2 (that is T2’s
cardinality), which is confirmed by the fact that [[q8]]
indeed contains (a1=1).

So, in the same context, [T2;T1], SQL computes 10
values for 1+0*a1, from 10 tuples, and 2 values for 1+0*a2,

from 2 tuples. The only sensible solution is that the
values, and their corresponding tuples depend not only
from the group context, but also from the expression to
be evaluated. Given a context and an expression, there
is a single relevant group, which is split into: T1 for
1+0*a1, and T2 for 1+0*a2 in the context [T2;T1].

Another interesting case is when the expression under
the aggregate is a constant value k, as in q9(k). What
should be the relevant group to be split into? Is there
even such a relevant group corresponding to the set of
all attributes of sum(1), that is the empty set?

Actually q9(2) yields the same result as q8, meaning
that the relevant group for a constant is the innermost
group T2. Surprisingly, compared to q7, q9(10) is empty,
which means that usual arithmetic equalities, such as
1+0∗a1 = 1 are no longer valid in SQL, under aggregates.

At that point, what happens if both expressions 1+0*
a1 and 1+0*a2 have to be evaluated in the same group
context as it is the case for q10, where 1+0*a1 and 1+0*
a2 occur under distinct aggregates. There is no single
obvious relevant group anymore. q10’s result contains
(a1=1), meaning that both expressions 1+0*a1 and 1+0*a2
have been evaluated independently, the first in a context
where T1 has been split into, and the second where the
splitted group is T2. This makes clear that SQL allows
two sub-expressions of a given expression to be evaluated
in different contexts which is definitely contrary to what
is done in other mainstream programming languages!

What if 1+0*a1 and 1+0*a2 occur under the same aggre-
gate, as in q11(k)? When k=2, [[q11(2)]] is

⋃i=4
i=1 {|(a1=i)|},

otherwise [[q11(k)]] is empty. Therefore T2, the innermost
relevant group, has been split into.

As the reader may have noticed, all expressions un-
der the aggregates were built upon grouping attributes.
What happens when such is not the case? Query q12 con-
tains sum(1+0*b1+0*b2) and is not well formed according
to the Standard, thus, is not evaluated. Next query q13
(k) contains sum(1+0*a1+0*b2) and behaves exactly the
same as q11(k) does. The last query, q14, which contains
sum(1+0*b1+0*a2), is ill-formed and not evaluated.

At that point, we are able to sum up the above lessons
and precisely explain how SQL manages environments.

First, when evaluating an expression with aggregates
where the top operand is a function (for instance +, as
in q10), each argument is evaluated separately.

Second, when evaluating an expression ag(e) where
the top operand ag is an aggregate, this aggregate is
evaluated against a list of values, each of them coming
from the evaluation of e over a tuple. The subtle point
is to understand how to build the corresponding list of
tuples. Let us introduce a few definitions that will be
helpful.

An environment, E=[Sn; ...;S1], is a stack of slices:
one slice per nesting level i, the innermost level being

A Coq mechanised formal semantics for realistic SQL queries Research Report, July 2018, Orsay, France

on the top. When necessary, we shall equally adopt
the following, OCaml-like, notation for environments
E = (A,G, T) :: E ′ in order to highlight the list’s head.
Slices are of the form S = (A,G, T), where A (also noted
A(S)) contains the relevant attributes for that level of
nesting, i.e., the names introduced in the subquery at
this level1; G the grouping expressions appearing in the
group by (also noted G(S)); and T a non empty list of
tuples2 (also noted T (S)).

When e is a constant expression, the list of tuples
T (Sn) comes from the innermost slice of environment
E = [Sn; ...;S1]. In the simple case where all attributes
of e are introduced at the same level i, the relevant
list is simply T (Si). Otherwise, when attributes of e
belong to at least two different levels among ik . . . i1
where ij+1 > ij , there are two cases:

• either the expression is not well-formed (cf q12
and q14), because e contains an homogeneous

expression of level ij , j < k which is not grouped.
• or the expression e is exactly built upon the at-

tributes corresponding to the kth level ik and
the grouping expressions3 of outermost levels
ik−1 . . . i1. In this case, let tij be a fixed tuple
chosen in each T (Sij) for j < k, then the list of
relevant tuples is made of t ./ tik−1 .// ti1 ,
where t ranges over T (Sik

).
We are now able to present our Coq mechanised formal
semantics for a realistic fragment of SQL.

3 A formal Coq mechanised semantics for
SQL

SQLCoq addresses the fragment consisting of select
[distinct] from where group by having queries with

NULL values, functions, aggregates, quantifiers and nested
potentially correlated (in from, where and having clauses)
sub-queries. It accounts for in, any, all and exists
constructs and assigns queries a Coq mechanised (bag)
semantics that complies with the Standard.

3.1 SQLCoq: syntax
SQLCoq’s syntax is given on Figure 2, Figure 3 and
Figure 4 where the left part of figures represents SQL’s
abstract syntax and the right part the corresponding
Coq syntax. We assume that we are given attributes,
functions and aggregates. We shall allow strings, integers
and booleans to be values, as well as the special NULL.
On the top of them, we define usual expressions, first
1if this subquery is a select from ... these are the names in
the select.
2When there is a grouping clause at this level, it is an homogeneous
group, otherwise it is a single tuple.
3those appearing in the group by clause of the level ; when there
are no such grouping expressions, all attributes of the level are
allowed.

without aggregates ef , and then with aggregates ea.
SQL formulas are similar to first order formulas except
they are always interpreted in a finite domain, which is
syntactically refered to as dom in Figure 3. Such formulas
will then be used in the context of SQLAlg.

SQLCoq sticks, syntactically, as much as possible, to
SQL’s syntax but the SQL-aware reader shall notice
that SQLCoq slightly differs from SQL in different ways.
First, for the sake of uniformity, we impose to have the
whole select from where group by having construct (no
optional where and group by having clauses). When the
where clause is empty, it is forced to true. Similarly, as
the group by clause partitions the collection of tuples
obtained evaluating the from clause, when no group by is
present in SQL, we force SQLCoq to work with the finest
partition4 which corresponds to the Group Fine case. We
also force explicit and mandatory renaming of attributes,
when ∗ is not used. In our syntax, select a, b from
t; is expressed by select a as a, b as b from (table
t[*]) where true group by Group_Fine having true. A
further, more subtle, point worth to mention is the
distinction we make between ef and ea. Both are expres-
sions but the former are built only with functions (fn)
and are evaluated on tuples while the latter also allow
unested5 aggregates (ag) and are, in that case, evaluated
on collections of tuples. In the same line, we used the
same language for formulae either occurring in the where
(dealing with a single tuple) or in the having clause

(dealing with collections of tuples) simply by identifying
each tuple with its corresponding singleton. Also, no
aliases for queries are allowed.

3.2 SQLCoq: semantics
Given a tuple t we note `(t) the attributes occuring
in t. We assume that we are given a database instance
[[]]db defined as a function from relation names to bags
of tuples6 as well as predefined, fixed interpretations,
[[]]p, for predicates pr7, i.e., a function from vectors of
values to Booleans, [[]]a and [[]]f for aggregates ag and
functions fn respectively8. As established in Section 2,
(complex) expressions occuring in (possibly correlated
sub-) queries, are evaluated under a sliced environment,
E = [Sn; ...;S1] (or E = (A,G, T) :: E ′), the innermost
level, n, corresponding to the first slice. The evaluation
of a syntactic entity e of type x in environment E will
be denoted by [[e]]x

E (where x is f for expressions built

4The partition consisting of the collection of singletons, one sin-
gleton for each tuple in the result of the from
5ea is of the form: avg(a); sum(a+b); sum(a+b)+3; sum(a+b)+
avg(c+3) but not of avg(sum(c)+a)
6these multisets enjoy some list-like operators such as empty, map,
filter, etc.
7pr is <, in etc.
8a may be sum, count etc. and f : +,*,- etc.

Research Report, July 2018, Orsay, France V. Benzaken and É. Contejean

function ::= + | - | * | / | ... | user defined fun
aggregate ::= sum | avg | min | ... | user defined ag
value ::= string val | integer val | bool val | NULL
ef ::= value | attribute | function(ef)

ea ::= ef | aggregate(ef) | function(ea)

Inductive value : Set :=
| String : string → value
| Integer : Z → value
| Bool : bool → value
| NULL : value.

Inductive funterm : Type :=
| F_Constant : value → funterm
| F_Dot : attribute → funterm
| F_Expr : symb → list funterm → funterm.

Inductive aggterm : Type :=
| A_Expr : funterm → aggterm
| A_agg : aggregate → funterm → aggterm
| A_fun : symb → list aggterm → aggterm.

Figure 2. Expressions.

formula ::=
| formula (and | or) formula
| not formula
| true
| p(ea) p ∈ predicate
| p(ea, (all | any) dom) p ∈ predicate
| ea as attribute in dom
| exists dom

Inductive conjunct : Type := And | Or.
Inductive quantifier : Type := All | Any.

Inductive select : Type := Select_As : aggterm → attribute → select.

Inductive formula (dom : Type): Type :=
| Conj : conjunct → formula dom → formula dom → formula dom
| Not : formula dom → formula dom
| True : formula dom| Pred : predicate -> list aggterm -> formula

dom| Quant : list aggterm -> predicate -> quantifier -> dom ->
formula dom| In : list select -> dom -> formula dom| Exists :
dom -> formula dom.

Figure 3. Formulas, parameterized by a finite domain of interpretation dom.

select item ::= ∗ | ea as attribute
query ::=

| table
| query (union | intersect | except) query
| select select item
from from item
(where formula)?
(group by ef (having formula)?)?

from item ::= query(attribute as attribute)

Inductive select item : Type :=
Select_Star | Select_List : list select → select_item.

Inductive att renaming : Type :=
| Att_As : attribute → attribute → att_renaming.

Inductive att renaming item : Type :=
| Att_Ren_Star
| Att_Ren_List : list att_renaming → att_renaming_item.

Inductive group by : Type :=
Group_Fine | Group_By : list funterm → group_by.

Inductive set op : Type := Union | Intersect | Except.

Inductive query : Type :=
| Table : relname → query
| Set : set_op → query → query → query
| Select :

(** select *) select_item →
(** from *) list from_item →
(** where *) formula query →
(** group by *) group_by →
(** having *) formula query → query

with from item : Type :=
| From_Item : query → att_renaming_item → sql_from_item.

Figure 4. SQL and SQLCoq syntax

only with functions, a for expressions built also with
aggregates, b for formulas and q for queries).

The semantics of simple expressions, which poses no
difficulties, is given in Figure 5. The semantics of com-
plex expressions detailed in Figure 6, deserves comments.
When the complex expression is headed by a function,
fn(e), it simply amounts to a recursive call. When the

complex expression is of the form ag(e), according to Sec-
tion 2, one has first to find the suitable level of nesting
for getting the group to be split into. Then, produce the
list of values by evaluating e, and then compute the eval-
uation of ag against this list of values. In environment
E=[Sn; . . . S1], level i is a suitable candidate expressed
by Se (A(Si), [Si−1; . . . ;S1], e) on Figure 6 whenever e
is built upon G = A(Si) ∪

⋃
j<i G(Sj) which is in turn

A Coq mechanised formal semantics for realistic SQL queries Research Report, July 2018, Orsay, France

[[c]]fE = c if c is a value
[[a]]f[] = default if a is an attribute
[[a]]f(A,G,[])::E = [[a]]fE
[[a]]f(A,G,t::T)::E = t.a if a ∈ `(t)
[[a]]f(A,G,t::T)::E = [[a]]fE if a < `(t)
[[fn(e)]]fE = [[fn]]f ([[e]]fE)

if fn is a function,
and e is a list of simple expressions

(* The type of evaluation environnements *)
Definition env type := list (list attribute * group_by * list tuple).

Fixpoint interp dot env (a : attribute) :=
match env with

| nil ⇒ default_value a
| (sa, gb, nil) :: env' ⇒ interp_dot env' a
| (sa, gb, t :: l) :: env' ⇒

if a inS? labels t then (dot t a) else interp_dot env' a
end.

Fixpoint interp funterm env t :=
match t with

| F_Constant c ⇒ c
| F_Dot a ⇒ interp_dot env a
| F_Expr f l ⇒

interp_symb f (List.map (fun x ⇒ interp_funterm env x) l)
end.

Figure 5. Simple expressions’ semantics.

c ∈ V
Bu (G, c)

e ∈ G
Bu (G, e)

∧
e Bu (G, e)

Bu (G, fn(e))

Bu ((A ∪
⋃

(A′,G,T)∈E G), e)

Se (A, E , e)

c ∈ V
Fe (E , c) = E

e < V
Fe ([], e) = undefined

e < V Fe (E , e) = E ′

Fe (((A,G, T) :: E), e) = E ′

Fe (E , e) = undefined Se (A, E , e)
Fe (((A,G, T) :: E), e) = (A,G, T) :: E

[[fn(e)]]aE = [[fn]]f ([[e]]aE)

[[ag(e)]]aE = [[ag]]a
(

[[e]]f
((A,G,[t])::E ′)

)
t∈T

iff Fe (E , e) = (A,G, T) :: E ′

Fixpoint (* (Bu (G, f)) *) is built upon G f :=
match f with

| F_Constant _ ⇒ true
| F_Dot _ ⇒ f inS? g
| F_Expr s l ⇒ (f ins? G) || forallb (is_built_upon G) l

end.

Definition (* (Se (la, env, f)) *) is a suitable env la env f :=
is_built_upon

(map (fun a ⇒ F_Dot a) la ++
flat_map (fun slc ⇒ match slc with (_, G, _) ⇒ G end) env)
f.

Fixpoint (* (Fe (env, f)) *) find eval env env f :=
match env with

| nil ⇒ if is_built_upon nil f then Some nil else None
| (la1, g1, l1) :: env' ⇒

match find_eval_env env' f with
| Some _ as e ⇒ e
| None ⇒

if is_a_suitable_env la1 env' f then Some env else None
end

end.

Fixpoint interp aggterm env (ag : aggterm) :=
match ag with
| A_Expr ft ⇒ (* simple expression without aggregate *)

interp_funterm env ft
| A_fun f lag ⇒

(* simple recursive call in order to evaluate independently the
sub-expressions when the top symbol is a function *)
interp_symb f (List.map (fun x ⇒ interp_aggterm env x) lag)

| A_agg ag ft ⇒
let env' :=

if is_empty (att_of_funterm ft)
then (* the expression under the aggregate is a constant *)

Some env
else (* find the outermost suitable level *) find_eval_env env

ft in
let lenv :=

match env' with
| None | Some nil ⇒ nil
| Some ((la1, g1, l1) :: env'') ⇒

(* the outermost group is split into *)
map (fun t1 ⇒ (la1, g1, t1 :: nil) :: env'') l1

end in
interp_aggregate ag (List.map (fun e ⇒ interp_funterm e ft)

lenv)
end.

Figure 6. Complex (with aggregates) expressions’ semantics.

Research Report, July 2018, Orsay, France V. Benzaken and É. Contejean

[[f1 and f2]]bE = [[f1]]bE ∧ [[f2]]bE
[[f1 or f2]]bE = [[f1]]bE ∨ [[f2]]bE
[[not f]]bE = ¬[[f]]bE
[[true]]bE = >
[[pr(ei)]]bE = [[pr]]p ([[ei]]aE)
[[pr(ei, all q)]]bE = >

iff [[pr(ei, t)]]bE = >
† for all t ∈ [[q]]qE

[[pr(ei, any q)]]bE = >
iff [[pr(ei, t)]]bE = >

† for at least one t ∈ [[q]]qE
[[ei as ai in q]]bE = >

if (ai = [[ei]]aE) belongs to† [[q]]qE
[[exists q]]bE = > iff [[q]]qE is not empty

†see paragraph for NULL’s in Section 3.2.

Hypothesis I : env_type → dom → bagT.
Fixpoint eval formula env (f : formula) : Bool.b B :=

match f with
| Sql_Conj a f1 f2 ⇒ (interp_conj B a)

(eval_formula env f1) (eval_formula env f2)
| Sql_Not f ⇒ Bool.negb B (eval_formula env f)
| Sql_True ⇒ Bool.true B
| Sql_Pred p l ⇒ interp_predicate p (map (interp_aggterm env) l)
| Sql_Quant qtf p l sq ⇒

let lt := map (interp_aggterm env) l in
interp_quant B qtf

(fun x ⇒
let la := Fset.elements _ (support T x) in
interp_predicate p (lt ++ map (dot T x) la))

(Febag.elements _ (I env sq))
| Sql_In s sq ⇒

let p := (projection env (Select_List s)) in
interp_quant B Exists_F

(fun x ⇒ match Oeset.compare (OTuple T) p x with
| Eq ⇒ if contains_null p

then unknown else Bool.true B
| _ ⇒ if (contains_null p || contains_null x)

then unknown else Bool.false B
end)

(Febag.elements _ (I env sq))
| Sql_Exists sq ⇒

if Febag.is_empty _ (I env sq) then Bool.false B else Bool.true
B

end.

Figure 7. Formulas’ semantics.

expressed by Bu (G, e) on Figure 6. When e is a con-
stant, the innermost level is chosen (here n), otherwise,
the outermost suitable candidate level is chosen as ex-
pressed by Fe (E , e). Formulas’ semantics, given in Fig-
ure 7, relies on expressions’ semantics. As the syntax is
parametrised by a domain dom, similarly formulas’ seman-
tics is parametrised by the domain’s evaluation. This
is expressed, in the Coq development, by Hypothesis I
: env_type → dom → bagT., and is expanded as query
interpretation, [[]]q, in the formal definition.

Let’s finally comment on query semantics, [[]]q, given
in Figure 8. For the set theoretic operators, we chose
to assign them a bag semantics even if our notations
do not explicitely mention all. If one wants to recover
the usual set semantics for sq = q1 op q2, one has to
apply dupplicate elimination thanks to δ(sq) = select
* from sq(ai as ai)ai∈`(sq) group by `(sq). The most

complex case is the select from where group by having
one. Informally, a first step consists in evaluating the
from and then filtering it thanks to the where formula.

More precisely how to check that a tuple t fullfils where
condition w in context E? According to the definition
in Figure 7, w is evaluted w.r.t, a single environment.
This means that t and E have to be combined into this
single environment, E ′ such that [[w]]f

E ′ is equal to the
evaluation of w, where the attributes a in `(t) are bound
to t.a, and the attributes a in

⋃
S∈E A(S) are bounded

thanks to
⋃

S∈E A(T). This is exactly what is done when
E ′ = (`(t), [], [t]) :: E .

Then the (intermediate) collection of tuples obtained is
partitioned according to the grouping expressions in the
group by G, yielding a collection of collections of tuples:
the groups. When there is no grouping clause, the finest
partition denoted Group_Fine in the Coq development is
used.

The way groups are further filtered w.r.t, the having
condition h follows the same pattern as where, except
that some complex expressions may occur in h. When
evaluting an expression of the form ag(e) for a group
T , all tuples of the group are needed; when evaluting a
simple expression, any tuple of T yields the same result,
T being homogeneous w.r.t, the grouping criterion G.
Hence the proper evaluation environment for filtering the
group T w.r.t, h in environment E is (`(T), G, T) :: E .

Last, the select clause is applied yielding again a
collection of tuples as a result.

About NULL’s At the expression level, NULL’s are simply
handled by the fact that they behave as an absorbing
element w.r.t, functions and are simply discarded for
aggregates except for count(*) where they contribute as
1. In our formalisation this is expressed as constraints
over [[]]a and [[]]f . For formulae, we used a 3-valued
logic. The evaluation of pr(e) in environment E is equal
to unknown iff there exists ei in e such that [[ei]]a

E =
NULL. As usual, unknown distributes according to well-
known 3-valued logic rules. Quantifiers all and any
are respectively seen as a finite conjunct and a finite
disjunct in 3-valued logic. Last, e as a in q is evaluated
as a finite disjunct of

∧
e = t.a where t ranges in [[q]]q,

A Coq mechanised formal semantics for realistic SQL queries Research Report, July 2018, Orsay, France

[[tbl]]qE = [[tbl]]db if tbl is a table
[[q1 union q2]]qE = [[q1]]qE ∪ [[q2]]qE
[[q1 intersect q2]]qE = [[q1]]qE ∩ [[q2]]qE
[[q1 except q2]]qE = [[q1]]qE \ [[q2]]qE
[[select ei as ai from fi where w group by G having h]]qE ={∣∣∣∣(ai = [[ei]]a(`(T),G,T)::E

)∣∣∣∣T ∈ F3

∣∣∣∣}
if F = ./i[[fi]]from

E
and F1 =

{∣∣∣t ∈ F ∣∣∣[[w]]b(`(t),[],[t])::E = >
∣∣∣}

and F2 is a partition† of F1 according to G
and F3 =

{∣∣∣T ∈ F2

∣∣∣[[h]]b(`(T),G,T)::E = >
∣∣∣}

[[q(ai as bi)]]from
E = {|(bi = ci) | (ai = ci) ∈ [[q]]qE |}

†see paragraph for NULL’s in Section 3.2.

Fixpoint eval sql query env (sq : sql_query) {struct sq} :=
match sq with
| Sql_Table tbl ⇒ instance tbl
| Sql_Set o sq1 sq2 ⇒

if sql_sort sq1 =S?= sql_sort sq2
then Febag.interp_set_op _ o

(eval_sql_query env sq1) (eval_sql_query env sq2)
else Febag.empty _

| Sql_Select s lsq f1 gby f2 ⇒
let elsq :=
(** evaluation of the from part *)

List.map (eval_sql_from_item env) lsq in
let cc :=
(** selection of the from part by the formula f1, with old names *)

Febag.filter
BTupleT

(fun t ⇒
Bool.is_true _

(eval_sql_formula eval_sql_query (env_t env t) f1))
(N_product_bag elsq) in

(** computation of the groups grouped according to gby *)
let lg1 := make_groups env cc gby in
(** discarding groups according the having clause f2 *)
let lg2 :=

List.filter
(fun g ⇒

Bool.is_true _
(eval_sql_formula eval_sql_query (env_g env gby g) f2))

lg1 in
(** applying the outermost projection and renaming,

the select part s *)
Febag.mk_bag BTupleT

(List.map (fun g ⇒ projection (env_g env gby g) s) lg2)
end

(** evaluation of the from part *)
with eval sql from item env x :=

match x with
| From_Item sqj sj ⇒

Febag.map BTupleT BTupleT
(fun t ⇒

projection (env_t env t) (att_renaming_item_to_from_item sj))
(eval_sql_query env sqj)
end.

Figure 8. SQL queries’ semantics.

meaning that as soon as e or t.a is evaluated to null,∧
e = t.a is unknown. Eventually, when used into queries’

evaluation, the evaluation of formulae yielding unknown
results are casted into false. It should be noticed that
even if NULL is not equal to nor different from NULL
or any other value in the contex of formulas, NULL is
equal to NULL for grouping. This is taken into account
in Figure 8 by a careful definition of partition and of
make_groups in the Coq development.

3.3 Experimental assessment
Now that we have defined a formal, Coq mechanised
semantics for SQL, how can we be convinced that it
is correct? Rather than relying on well-known bench-
marks like TPC-H [11] that mainly address performance
issues whereas we seek for semantic related aspects, we
adopted the approach presented in [16]. We designed
an automatic query generator. The parameters of our
generator are:

1. The number of tables in the schema

2. The number of attributes for each table
3. The proportion of constants among expressions
4. The max number of expressions in the select
5. The max number of queries in the from clause
6. The max number of grouping expressions in the

group by
7. The max level of nesting
8. The max size of a relation’s instance
9. The max integer value in in relations’ instances

10. The proportion of NULL’s in instances
As we needed to generate queries that were to be ac-
cepted by Postgresql and Oracle™, we not only relied
on SQLCoq’s grammar but also imposed well-formed
conditions to our generator. We ran9 our experiment
on 10.000 queries. In all cases we observed the same
results for Postgresql (Version 9.5.12), Oracle™(https:
//livesql.oracle.com/apex/livesql/file/index.html running
Oracle Database 18c) and SQLCoq. At that point we
9For performance reasons, as Coq is not designed for intensive
computations, we used the OCaml extracted code from SQLCoq.

Research Report, July 2018, Orsay, France V. Benzaken and É. Contejean

strongly believe that SQLCoq faithfully reflects SQL’s
semantics.

4 SQLAlg: a Coq mechanised algebra for SQL
We now present SQLAlg, our Coq formalisation of an
algebra that hosts SQLCoq. SQLAlg borrows from the
extended relational algebra presented in [12] which con-
sists of the well-known relational operators π (projection)
which corresponds to select, σ (selection) correspond-
ing to where and ./ (join) to from together with the set
theoretic operators. To account for SQL, the algebra
in [12] is extended with the γ (grouping) operator.

4.1 Syntax and semantics
However, as it is presented the algebra in [12] does not
account for having conditions neither for complex ex-
pressions (grouping is only possible over attributes and
aggregates are computed over single attributes) nor for
environments. Unlike this proposal, ours is far much ex-
pressive as it allows for grouping over simple expressions
and allows complex expressions ea in projections.

So as to deal with having conditions, that directly
operate on groups that carry more information than
single tuples, SQLAlg extends what is presented in [12]
by adding an extra parameter to γ: the having condition.
As pointed in [12], one should notice that the δ (dup-
plicate elimination) operator is absent as it is a special
case of γ10.

Q ::= table
| Q (union | intersect | except) Q
| Q ./ Q
| π(ea as attribute) (Q)

| σformula (Q)
| γ

(ea as attribute,ef ,formula)
(Q)

Figure 9. SQLAlg syntax

Expressions (simple and complex ones) as well as
formulas11 are shared with SQLCoq. In order to define
the semantics of SQLAlg expressions, environments are
needed, for the same reasons as for SQLCoq: accounting
for nesting. SQLAlg environments are exactly the same
as for SQLCoq. What should be noticed is that ./ is the
true natural join, and that γ can be seen as a degenerated
case of select from group where by having, where the
where condition is absent (or set to true).

Let us at that point formally relate SQLCoq and SQLAlg.

10δ(Q) = γ(a as a,a,true) (Q) where a spans over the labels of query
Q.
11For algebraic formulas, the domain parameter dom is actually
algebraic queries.

[[tbl]]QE = [[tbl]]db if tbl is a table
[[q1 union q2]]QE = [[q1]]QE ∪ [[q2]]QE
[[q1 intersect q2]]QE = [[q1]]QE ∩ [[q2]]QE
[[q1 except q2]]QE = [[q1]]QE \ [[q2]]QE
[[q1 ./ q2]]QE =
∣∣∣∣∣∣(ai = ci, bj = dj

) ∣∣∣∣∣∣
(ai = ci) ∈ [[q1]]QE∧
(bj = dj) ∈ [[q2]]QE∧
(∀ i, j, ai = bj =⇒ ci = dj)

∣∣∣∣∣∣


[[π(ei as ai) (q)]]
Q
E = {|(ai = [[ei]]a(`(t),[],[t])::E) | t ∈ [[q]]qE |}

[[σf (q)]]
Q
E = {|t ∈ [[q]]qE | [[f]]b

(`(t),[],[t])::E = >|}
[[γ(ej as aj ,ei,f) (q)]]

q
E ={∣∣∣∣(aj = [[ej]]a

(`(T),ei,T)::E

)∣∣∣∣T ∈ F3

∣∣∣∣}
and F2 is a partition of [[q]]QE according to ei

and F3 =
{∣∣∣T ∈ F2

∣∣∣[[f]]b(`(T),ei,T)::E = >
∣∣∣}

Figure 10. SQLAlg semantics

4.2 SQLCoq and SQLAlg are equivalent
On Figure 11, we give Tq () a translation from SQLCoq

to SQLAlg, and its back translation TQ (). Both use
auxilliary translations (Tf (), resp. TF ()) which sim-
ply traverse formulas in order to translate the queries
they contain. Since simple and complex expressions are
shared, they are left unchanged by these translations.

These translations are sound, provided that they are
applied on ”reasonable” database instances and queries.

Definition 4.1. A database instance [[]]db is well-sorted
if and only if all tuples in the same table have the same
labels:
∀r, t1, t2, t1 ∈ [[r]]db ∧ t2 ∈ [[r]]db =⇒ `(t1) = `(t2).

Definition 4.2. A SQLCoq query sq is well-formed if and
only of all labels in its from clauses are pairwise disjoint
and its sub-queries are well-formed:

Wq (tbl)
if tbl is a table

Wq (q1) W
q (q2)

Wq (q1 union q2)

Wq (q1) W
q (q2)

Wq (q1 intersect q2)

Wq (q1) W
q (q2)

Wq (q1 except q2)

disjoint{bi}i
∧

iW
q (qi) W

f (w) Wf (h)

Wq (select s from qi (ai as bi) where w group by G having h)
Wf (f1) W

f (f2)

Wf (f1 and f2)

Wf (f1) W
f (f2)

Wf (f1 or f2)

Wf (f)

Wf (not f)

Wf (true) Wf (pr(ei))

Wq (q)

Wf (exists q)

Wq (q)

Wf (pr(ei, all q))
Wq (q)

Wf (pr(ei, any q))
Wq (q)

ei as ai in q

A Coq mechanised formal semantics for realistic SQL queries Research Report, July 2018, Orsay, France

Tq (tbl) = tbl
Tq (q1 union q2) = Tq (q1) union Tq (q2)
Tq (q1 intersect q2) = Tq (q1) intersect Tq (q2)
Tq (q1 except q2) = Tq (q1) except Tq (q2)
Tq (select ei as ai from fi where w) =

π(ei as ai)
(σTf (w) (./iTfrom (fi)))

Tq (select ei as ai from fi where w
group by G having h) =

γ(ei as ai,G,Tf (h)) (σTf (w) (./iTfrom (fi)))

Tfrom (q(ai as bi)) = π(ai as bi)
(Tq (q))

TQ (tbl) = tbl
TQ (q1 union q2) = TQ (q1) union TQ (q2)
TQ (q1 intersect q2) = TQ (q1) intersect TQ (q2)
TQ (q1 except q2) = TQ (q1) except TQ (q2)
TQ (q1 ./ q2) =

select (a′1 as a1a1∈`(q1)
, a′2 as a2a2∈`(q2)\`(q1)

)

from [TQ (q1) (a1 as a′1);T
Q (q2) (a2 as a′2)]

where (a′1 = a
′
2)a1∈`(q1),a2∈`(q2),a1=a2

where a′1 and a′2 are fresh names
TQ (π(e as a) (q)) = select (e as a) from [TQ (q) (a as a)]
TQ (σf (q)) = select ∗ from [TQ (q) (a as a)]where TF (f)

TQ (γ(e as a,G,f) (q)) =

select (e as a) from [TQ (q) (a as a)] group by G having TF (f)

Figure 11. Translations between SQLCoq and SQLAlg.

Provided that those conditions be fullfilled we can
state that the following equivalence Theorem.

Theorem 4.3. Let [[]]db be a well-sorted database instance
and sq be a SQLCoq query, aq a SQLAlg query then:

∀E , sq,Wq (sq) =⇒ [[Tq (sq)]]QE = [[sq]]qE
∀E , aq, [[TQ (aq)]]qE = [[aq]]QE

The proof proceeds by (mutual) structural induction
over queries and formulas. Actually the proof is made
by induction over the sizes of queries and formulas. It
consists of 500 lines of Coq code and heavily rely on a
tactic which allows to automate the proofs that size for
sub-objects is decreasing. For the correctness of Tq (),
well-formedness hypothesis of the theorem essentially
ensures that Cartesian product and natural join coin-
cide. What was interesting is that the well-formedness
hypothesis was mandatory and this shed light on the fact
that, indeed, SQL from behaves as a cross product. For
both translations, well-sortedness ensures that reasoning
over tuples’ labels in the evaluation of a query can be
made globally, by ”statically” computing the labels over
a query.

5 Conclusions
Seeking for a formal semantics for SQL has been a long-
standing quest for the database community. In this arti-
cle, we presented a formal, Coq mechanised, executable
semantics for a large realistic fragment of SQL. Both
aspects, mechanised and executable, are of paramount
importance.

Mechanisation inside a proof assistant, such as Coq,
raises some relevant issues and enlightening questions.
Indeed, as for theoretical reasons Coq requires (recur-
sive) functions to be total, once the syntax is fixed, the
semantics has to be ”totally” defined. This implies that
no details can be swept under the carpet. All cases

must be considered. This led us to not only discover a
bunch of weird queries, the ones of Figure 1, but also
to discover strange boundary conditions. For instance,
provided empty be the empty relation, query select
1 from empty group by 1+1 having 2=2; returns empty
on both Postgresql and Oracle™. However, query select
1 from empty having 2=2; yields 1 in Postgresql while

Oracle™ answers empty set. In that case, Postgresql
consider that the partition of the emptyset ∅ is {∅}
whereas Oracle™ uses the true mathematical definition:
∅. We implemented Oracle™’s semantics for this case.

Providing an executable semantics allows one to be
convinced that the semantics is correct as it can be
confronted to real systems. This is what we achieved
thanks to our query generator.

Last combining mechanisation and execution in the
same framework, namely Coq, provides the strongest
possible guarantees that there are no gaps between the
definition and the execution: no transcription error be-
tween a pen and paper definition and the corresponding
program may occur.

Thanks to our formal semantics we have been able
to relate SQLCoq and SQLAlg establishing, the first, to
our best knowledge, equivalence result for that SQL
fragment. Moreover, by doing so, we can recover the
well-known algebraic equivalences presented in textbooks.
Such equivalences are proven, using Coq, in [3].

In an early version of the development, we defined
a pure set-theoretic semantics and only addressed the
SQL’s fragment with no duplicates. Then we addressed
the bag aspects of SQL and were pleasantly surprised to
discover that it was not so dramatic. Therefore, the wide-
spread belief that the problem for SQL is to assign it a
bag semantics is not as crucial as it seemed to be. What
was really challenging was to accurately and faithfully
grasp SQL’s management of expressions and environ-
ments in the presence of nested queries. The ISO/IEC

Research Report, July 2018, Orsay, France V. Benzaken and É. Contejean

document was of little help along this path. On the con-
trary, Coq was an enlightening, very demanding master
of invaluable help. Even if we knew it, it confirmed us
that, SQL having initially been designed as a domain
specific language intended not to be Turing-complete,
the fact of adding more features along the time in the
standardisation process, seriously, and sadly, departed
it from its original elegant foundations. By formally
relating SQL and an extended relational algebra, we,
humbly, wanted to pay tribute to the pionneers that
designed the foundational aspects of RDBMs.

Our long term goal is to provide a Coq verified SQL’s
compiler. The work presented in this article allows to
obtain a mechanised semantic analyser that we plan
to extend to features like order by. In [6] we pro-
vided a certification of the physical layer of a SQL
engine where mainstream physical operators such as
sequential scans, nested loop joins, index joins
or bitmap index joins are formally specified and im-
plemented. What remains to be done is to address the
logical optimisation part of the compiler.

References
[1] T. Arvin. 2017. Comparison of different SQL’s implementa-

tions. http://troels.arvin.dk/db/rdbms
[2] J. S. Auerbach, M. Hirzel, L. Mandel, A. Shinnar, and J.

Siméon. 2017. Handling Environments in a Nested Relational
Algebra with Combinators and an Implementation in a Veri-
fied Query Compiler. In SIGMOD Conference, Chicago, IL,
USA, May 14-19, 2017, S. Salihoglu, W. Zhou, R. Chirkova,
J. Yang, and D. Suciu (Eds.). ACM, 1555–1569.

[3] Véronique Benzaken and Evelyne Contejean. 2016. SQL-
Cert: Coq mechanisation of SQL’s compilation: Formally
reconciling SQL and (relational) algebra. (Oct. 2016). https:
//hal.archives-ouvertes.fr/hal-01487062

[4] V. Benzaken, É. Contejean, and S. Dumbrava. 2014. A Coq
Formalization of the Relational Data Model. In 23rd European
Symposium on Programming (ESOP).

[5] V. Benzaken, É. Contejean, and S. Dumbrava. 2017. Cer-
tifying Standard and Stratified Datalog Inference Engines
in SSReflect. In 8th International Conference on Interactive
Theorem Proving (ITP 2017), M. Ayala-Rincon and C. Munoz
(Eds.), Vol. 10499. Springer.

[6] V. Benzaken, É. Contejean, C. Keller, and E. Martins. 2018.
A Coq formalisation of SQL’s execution engines. In Inter-
national Conference on Interactive Theorem Proving (ITP
2018). Oxford, United Kingdom.

[7] S. Ceri and G. Gotlob. 1985. Translating SQL into Relational
Algebra: Optimisation, Semantics, and Equivalence of SQL
Queries. IEEE Trans., on Software Engineering SE-11 (April
1985), 324–345.

[8] J. Cheney and Ch. Urban. 2011. Mechanizing the Metatheory
of mini-XQuery. In CPP. 280–295.

[9] S. Chu, K. Weitz, A. Cheung, and D. Suciu. 2017. HoTTSQL:
Proving Query Rewrites with Univalent SQL Semantics. In
PLDI 2017. ACM, New York, NY, USA, 510–524.

[10] S. Cluet and G. Moerkotte. 1993. Nested Queries in Ob-
ject Bases. In Database Programming Languages (DBPL-4),
Manhattan, New York City, USA, 30 August - 1 September
1993. 226–242.

[11] Transaction Processing Performance Concil. [n. d.]. TPC
Benchmark (Decision Support) Standard Specification Re-
vision 2.17. http://www.tpc.org/tpc documents current
versions/pdf/tpc-h v2.17.1.pdf

[12] H. Garcia-Molina, J D. Ullman, and J. Widom. 2009. Data-
base systems - the complete book (2. ed.). Pearson Education.

[13] C. Gonzalia. 2003. Towards a Formalisation of Relational
Database Theory in Constructive Type Theory. In RelMiCS
(LNCS), R. Berghammer, B. Möller, and G. Struth (Eds.),
Vol. 3051. Springer, 137–148.

[14] C. Gonzalia. 2006. Relations in Dependent Type Theory.
Ph.D. Dissertation. Chalmers Göteborg University.

[15] T J. Green, G. Karvounarakis, and V. Tannen. 2007. Prove-
nance semirings. In Proceedings of the Twenty-Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 11-13, 2007, Beijing, China. 31–40.

[16] P. Guagliardo and L. Libkin. 2017. A Formal Semantics of
SQL Queries, Its Validation, and Applications. PVLDB 11,
1 (2017), 27–39.

[17] R. Harper. 2016. Practical Foundations for Programming
Languages. Cambridge University Press.

[18] ISO/IEC. 2006. Information technology - Database Lan-
guages - SQL - Part 2: Foundation (SQL/Foundation). Final
Commitee Draft.

[19] H. Katz, D. Chamberlin, M. Kay, Ph. Wadler, and D. Draper.
2003. XQuery from the Experts: A Guide to the W3C XML
Query Language. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[20] X. Leroy. 2009. A Formally Verified Compiler Back-end. J.
Autom. Reasoning 43, 4 (2009), 363–446.

[21] G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. 2010.
Toward a Verified Relational Database Management System.
In ACM Int. Conf. POPL.

[22] M. Negri, G. Pelagatti, and L. Sbattella. 1991. Formal Se-
mantics of SQL Queries. ACM Trans. Database Syst. 16, 3
(1991), 513–534.

[23] B. Pierce et al. 2018. Software Foundations - Programming
Languages Foundations. Vol. 2.

[24] The Agda Development Team. 2010. The Agda Proof Assis-
tant Reference Manual. http://wiki.portal.chalmers.se/agda/
pmwiki.php

[25] The Coq Development Team. 2010. The Coq Proof Assistant
Reference Manual. http://coq.inria.fr

[26] The Isabelle Development Team. 2010. The Isabelle Interac-
tive Theorem Prover. https://isabelle.in.tum.de/

[27] X. Yang, Y. Chen, E. Eide, and J. Regehr. 2011. Finding and
understanding bugs in C compilers. In PLDI 2011, Mary W.
Hall and David A. Padua (Eds.). ACM, 283–294.

