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Erik D. Demaine∗ Stefan Langerman†

Abstract
We prove that the following problem is co-RE-complete
and thus undecidable: given three simple polygons, is
there a tiling of the plane where every tile is an isometry
of one of the three polygons (either allowing or forbid-
ding reflections)? This result improves on the best previ-
ous construction which requires five polygons.

“Three Rings for the Elven-kings under the sky, . . . ”
— J. R. R. Tolkien, The Lord of the Rings, epigraph

1 Introduction
A tiling of the plane [GS87] is a covering of the plane by
nonoverlapping polygons called tiles, isometric copies of
one or more geometric shapes called prototiles, without
gaps or overlaps. In this paper, we study the most funda-
mental computational problem about tilings:

Problem 1 (Tiling). Given one or more prototiles, can
they tile the plane?

The tiling problem is undecidable — solved by no fi-
nite algorithm. Golomb [Gol70] was first to prove this
result, by building 𝑛 polyominoes that simulate 𝑛 Wang
tiles [Wan61] — unit squares with edge colors that must
match — by adding color-specific bumps and dents to
each edge. Four years earlier, Berger [Ber66] proved that
tiling with Wang tiles is undecidable (disproving Wang’s
original conjecture [Wan61]) by showing how they can
simulate a Turing machine. Robinson [Rob71] later sim-
plified Berger’s proof. The worst-case number 𝑛 of tiles
(Wang or polyomino) is Θ( |𝑄 | · |Σ|), where |𝑄 | and |Σ|
are the number of states and symbols in the simulated
Turing machine, respectively.

Constant Number of Prototiles. The first constant
and previously best upper bound on the number of pro-
totiles required to make the tiling problem undecidable
is 5, as proved by Ollinger fifteen years ago [Oll09]. Our
main result is an improvement of this upper bound to 3:
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Theorem 1.1. Given three simple-polygon prototiles, de-
termining whether they tile the plane is undecidable.

It remains open whether tiling with one or two given
prototiles is decidable. Periodic tilings (tilings with two
translational symmetries) can be found algorithmically
by enumerating fundamental domains. (Surprisingly,
this intuitive fact does not seem to have been explicitly
proved before, except in special settings like Wang tiles
[Wan61].) Thus a necessary condition for undecidability
is the existence of prototile(s) with only aperiodic tilings.
Recently, Smith, Myers, Kaplan, and Goodman-Strauss
[SMKGS23] found a single prototile with this property,
so there are no obvious obstacles to undecidability.

Tiling by Translation. Our construction relies on
rotation of the prototiles (but works independent of
whether we allow reflections). If we restrict to tiling
by translation only, then Ollinger’s construction can be
modified to use 11 prototiles, by adding some rotations of
the five polyominoes [Oll09]. This upper bound was im-
proved to 10 by Yang [Yan23] and to 8 by Yang and Zhang
[YZ24a]. All of these constructions use polyominoes. In
higher dimensions, Yang and Zhang [YZ24b] improved
the upper bound to five polycube prototiles in 3D, and
four polyhypercube prototiles in 4D.

The tiling-by-translation problem also has a lower
bound of 2 for undecidability: any single polygon that
tiles the plane by translation can do so by periodic (even
isohedral) tiling [GBN91]. This result also holds for dis-
connected polyominoes [Bha20]. If we generalize to
tiling a specified periodic subset of 𝑑-dimensional space,
where 𝑑 is part of the input, then Greenfeld and Tao
[GT24] recently proved tiling to be undecidable with a
single disconnected polyhypercube.

Periodic Target. We show that Greenfeld and Tao’s
generalization to tiling a specified periodic subset [GT24]
changes the best known results also for undecidabil-
ity of tiling the plane. Our 3-polygon construction
and Ollinger’s 5-polyomino construction [Oll09], and
Yang and Zhang’s 8-polyomino translation-only poly-
omino construction [YZ24a] all have one prototile (our
shurikens, and their jaws) that appear periodically in any
tiling of the plane. Thus, if we remove that pattern from
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the target, we obtain a periodic subset of the plane which
can be tiled using a reduced number of prototiles of 2, 4,
and 7, respectively. In particular, we prove

Corollary 1.2. Given two simple-polygon prototiles, and
given a periodic subset of the plane, determining whether
the two prototiles tile the periodic subset is undecidable.

Logical Undecidability. Algorithmic undecidability
implies logical undecidability (as explained in [GT23]
in the context of tilings). In particular, our result im-
plies that there are three polygon prototiles that cannot
be proved or disproved to tile the plane, for any fixed set
of axioms (e.g., ZFC). Otherwise, we would obtain a finite
algorithm to decide tileability, by enumerating all proofs.

Corollary 1.3. For any fixed set of axioms, there are three
fixed simple-polygon prototiles such that both “these pro-
totiles tile the plane” and “these prototiles do not tile the
plane” have no proof.

Tiling Completion. Undecidability of tiling requires
the set of prototiles to depend on the Turing machine
simulation. To obtain undecidability with a fixed set of
prototiles, we can generalize the tiling problem [Rob71]:

Problem 2 (Tiling Completion). Given one or more pro-
totiles, and given some already placed tiles, can this
placement be extended to a tiling of the plane?

Robinson [Rob71] gave the first result on this problem:
a set of 36 prototiles (Wang tiles or polygons) for which
tiling completion is undecidable. This result applies the
general Turing machine simulation to Minsky’s 4-symbol
7-state universal Turing machine, so only a finite number
of tiles need to be preplaced to represent the Turing ma-
chine to simulate. Likely this result could be improved
using newer smaller universal Turing machines [WN09].
If we allow for (countably) infinitely many tiles to be pre-
placed, we can use semi-universal Turing machines and
simulate Rule 110, enabling undecidability with just six
supertiles (Wang tile or polygons) [Yan13].

Our main result reduces this upper bound to 3, in the
stronger model of finitely many preplaced tiles:

Corollary 1.4. There are three fixed simple-polygon pro-
totiles such that, given a finite set of already placed tiles,
determining whether this placement can be extended to a
tiling of the plane is undecidable.

Co-RE-completeness. While past results on tiling
and tiling completion have focused on undecidability, all
such proofs actually show co-RE-hardness: the simu-
lated Turing machine halts if and only if the prototiles
fail to tile. Co-RE-hardness is a more precise statement
than undecidability, so we use that phrasing here. But it

also raises the question: are tiling and tiling completion
in co-RE? Surprisingly, this question does not seem to
have been solved (or even asked) in the literature before.
We prove that the answer is “yes”:

Theorem 1.5. Given a finite set of polygon prototiles, and
given a (possibly empty) connected set of already placed
tiles, determining whether this placement can be extended
to a tiling the plane is in co-RE.

This result holds in a very general model for polygons:
the angles and edge lengths can be represented as com-
putable numbers (meaning that a Turing machine can
output the first 𝑛 bits, given 𝑛). Our three-polygon con-
struction uses a more restricted model, where the an-
gles are rational multiples of 𝜋 and the edge lengths are
constant-size radical expressions, showing the problem
to be co-RE-complete for every model in between.

Corollary 1.6 (Stronger form of Theorem 1.1). Given
three simple-polygon prototiles, where the angles and
edge lengths are specified by computable numbers or
by constant-size radical expressions, determining whether
they tile the plane is co-RE-complete.

In this abstract, we sketch the proof of Theorem 1.1.
See the full paper [DL24] for full proofs.

2 Signed Wang Tiling
We reduce from Wang tiling, which is known to be un-
decidable. Specifically, we use a variation called signed
freeWang tiling, where eachWang tile is a square with
a glue on each edge, each glue has a sign (+ or −) and
a value, two glues match exactly if they have opposite
sign and equal value, and Wang tiles can be freely trans-
lated and/or rotated (but not reflected). In 1971, Robinson
[Rob71, p. 179] proved undecidability of tiling the plane
with a square grid of such Wang tiles and matching glues,
via a simple reduction from the (unsigned translation-
only) Wang tiling problem proved undecidable by Berger
[Ber66]. These results in fact establish co-RE-hardness.

3 Three Tiles That Simulate 𝒏
Signed Wang Tiles

We implement any set of 𝑛 (signed free) Wang tiles with
three tiles, illustrated in Figure 1:

1. the wheel which encodes all of the Wang tiles,

2. the staple which covers the unused Wang tiles of
each wheel, and

3. the shuriken which fills in the remaining gaps.
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(a) Wheel

(b) Shuriken (c) Staple

Figure 1: The three tiles in our construction, to scale; Figure 2
shows zoomed details of the construction. The wheel is just an
example; it depends on the 𝑛 Wang tiles being simulated. The
shuriken depends (only) on 𝑛.

Suppose we are given a set of 𝑛 Wang tiles, where the
𝑖th tile (1 ≤ 𝑖 ≤ 𝑛) has signed glues 𝑛𝑖 , 𝑒𝑖 , 𝑠𝑖 ,𝑤𝑖 on its
north, east, south, and west edges respectively. Assume
𝑛 is an odd integer ≥ 5 by possibly adding duplicate tiles.

The wheel is a regular 4𝑛-gon with each edge adorned
by bumps and notches representing the 4𝑛 glues. For tile
𝑖 , the glues 𝑛𝑖 , 𝑒𝑖 , 𝑠𝑖 ,𝑤𝑖 adorn sides 𝑖, 𝑛 + 𝑖, 2𝑛 + 𝑖, 3𝑛 + 𝑖 of
the 4𝑛-gon, respectively. To encode a glue, we encode its
value in binary using 𝑏 = 𝑂 (log𝑛) bits, prepend a 00 at
the beginning, and append 01 at the end. For negative
glues, we reverse the order of the bits, which puts a 10
at the beginning and a 00 at the end. Then we represent
each bit with a tweedledee (0) or tweedledum (1) gad-

𝛼

𝛽 𝛽

𝛽 𝛽

𝛼

(a) Wheel: Tweedledee (0)

𝛼

𝛽 𝛽

𝛽 𝛽

𝛼

(b) Wheel: Tweedledum (1)

𝛼

𝛽 2𝛽 𝛽

𝛼

(c) Shuriken: Notch

𝛽 𝛽

𝛽𝛽

2𝛼

(d) Staple

(e) Combining the tweedle, notch,
and staple.

Figure 2: Zoomed views of portions of the three tiles in our
construction (10× scale compared to Figure 1).

0 0 1 0 1 0 1

0 0 1 0 1 0 1

Figure 3: Matching a glue (top) and its negative (bottom) be-
tween two wheels.

get, which are rotationally symmetric zig-zags shown in
Figures 2(a) and 2(b). Both follow the sequence of angles
𝛼, 𝛽, 𝛽, 𝛽, 𝛽, 𝛼 where 𝛼 = 𝜋

2 −2𝜀, 𝛽 = 𝜋
2 −𝜀, and 𝜀 = 𝜋

16 . For
tweedledee, this sequence measures defect, angle, angle,
defect, defect, angle, respectively; while for tweedledum,
this measures the opposite (angle, defect, defect, angle,
angle, defect). As shown in Figure 3, two adjacent glues
match exactly if and only if they have the same value and
opposite sign (where the opposite sign is enforced by the
00 and 01 at either end). This representation also ensures
that reflecting a wheel will produce reflected glues that
do not match unreflected glues: a reflection causes the
bits of a glue to be reversed and negated, so the reflec-
tion of a positive glue starts with 01 and ends with 11,
and the reflection of a negative glue starts with 11 and
ends with 10, both of which are incompatible with unre-
flected glues.

By this construction, rotating the wheel so that its 𝑖th
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Figure 4: Example tiling with the wheel, shuriken, and staple.

side is horizontal and at the top will have its north, east,
south, and west sides represent the glues 𝑛𝑖 , 𝑒𝑖 , 𝑠𝑖 ,𝑤𝑖 of
tile 𝑖 . Given a tiling of the plane using this set of Wang
tiles, we can place copies of the rotated wheel exactly
as in the Wang tiling, and the glues will match exactly.
Some space remains between the wheels, which we fill
with “staples” and “shurikens”. See Figure 4.

The shuriken is composed of four regular concave
chains of 𝑛 − 1 sides, matching the lengths and comple-
mentary to the angles of the regular 4𝑛-gon. Each side is
adorned with 𝑏 reflectionally symmetric notches, shown
in Figure 2(c), each consisting of convex angle 𝛼 ; reflex
deficits 𝛽, 2𝛽, 𝛽 ; and convex angle 𝛼 . As shown in Fig-
ure 2(e), each notch can fit a tweedle of either kind, leav-
ing a space that is filled exactly by a staple (shown in
Figure 2(d), and consisting of convex angles 𝛽, 𝛽, 𝛽, 𝛽 and

reflex deficit 2𝛼). Thus each side of the shuriken can ex-
actly match any glue, effectively hiding the unused tiles
of each wheel (the glues that are not on the north, east,
south, or west sides).

Thus we have shown one direction of the reduction:
given a set of 𝑛 Wang tiles and a tiling of the plane with
them, we can construct a tiling of the plane with the
wheel, the shuriken, and the staple. To show that this
intended tiling is the only way our three tiles can tile the
plane, we analyze the limited ways in which the angles
of the shapes can fit together. In particular, we prove that
staples alone, then staples and shurikens together, cannot
tile the plane. This guarantees the existence of a wheel,
and then we show that it must be surrounded by an alter-
nation of shurikens and staples, which eventually forces
a Wang tiling.
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