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Abstract. In the domain of process discovery, there are four quality di-
mensions for evaluating process models of which simplicity is one. Sim-
plicity is often measured using the size of a process model, the structured-
ness and the entropy. It is closely related to the process model under-
standability. Researchers from the domain of business process manage-
ment (BPM) proposed several metrics for measuring the process model
understandability. A part of these understandability metrics focus on the
control-flow perspective, which is important for evaluating models from
process discovery algorithms. It is remarkable that there are more of
these metrics defined in the BPM literature compared to the number of
proposed simplicity metrics. To research whether the understandability
metrics capture more understandability dimensions than the simplicity
metrics, an exploratory factor analysis was conducted on 18 understand-
ability metrics. A sample of 4450 BPMN models, both manually modelled
and artificially generated, is used. Four dimensions are discovered: token
behaviour complexity, node IO complexity, path complexity and degree
of connectedness. The conclusion of this analysis is that process analysts
should be aware that the measurement of simplicity does not capture all
dimensions of the understandability of process models.

Key words: Understandability metrics, simplicity, process models, ex-
ploratory factor analysis, BPMN

1 Introduction

Many organisations are aware of the importance of becoming process-oriented. A
first step is modelling the current processes [1]. This can be done by conducting
stakeholder interviews or discovering the model from event logs [1, 2]. A graphical
notation is used for expressing the process models. Examples of these notations
are BPMN (Business Process Model and Notation) and Petri nets. The useful-
ness of the process models depends among other things on how understandable
they are [3]. To this end, many researchers of the business process management
(BPM) domain have proposed metrics for measuring different aspects of process
model understandability. These metrics belong to different perspectives such as
the organisational perspective and the control-flow perspective. The control-flow
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perspective takes into account everything that is related to the execution order
of activities [4].

In the domain of process discovery, models discovered using an algorithm
are evaluated based on four quality dimensions including the simplicity [4]. Sim-
plicity is related to Occam’s Razor’s principle, which implies that the simplest
process model should be chosen for explaining the behaviour observed in the
event log [4]. It is most of the times measured using the process model size, the
structuredness and entropy [4, 5]. Also metrics such as the control-flow complex-
ity have been proposed to measure simplicity [5]. Simplicity is strongly associated
with the understandability metrics belonging to the control-flow perspective.

It is remarkable that there are many more understandability metrics pro-
posed in the BPM literature compared to the number of simplicity metrics. It
is possible that these simplicity metrics capture not all dimensions measured by
the understandability understandability metrics from the BPM field. Therefore,
we define the following research question: ”To what extent do the simplicity
measures used in process discovery cover the whole spectrum of control flow
related understandability metrics in BPM?”

There are three contributions delivered by this paper:

– the identification of existing understandability metrics belonging to the con-
trol flow perspective. For this research article, we identified 18 existing metrics
for measuring aspects of the understandability using a structured literature
review. The metrics were implemented using the programming language R [6]
and are publicly made available as an R package on CRAN1. This implemen-
tation was needed, because a software implementation for a part of the metrics
was not publicly available. All metrics can be found in section 2.

– the discovery of the understandability metrics’ underlying dimensions by the
means of an exploratory factor analysis. We performed the analysis using
BPMN models, which are both manually modelled and artificially generated.
The BPMN notation is chosen, because it is one of the most popular ones
used in the industry. The reason is that the notation is easier to comprehend
than for example Petri nets [7, 8]. Section 4 contains all results of the factor
analysis. The methodology is explained in section 3.

– An analysis of which dimensions are not measured by the current simplicity
metrics. Based on this analysis, we propose an alternative way for measuring
the simplicity in order that all dimensions are represented. This is explained
in section 5.

2 Related work

Many metrics exist for the measurement of the understandability of process
models. Both the field of business process management and the field of process
discovery proposed several metrics in the literature. In the field of process dis-
covery, simplicity is one of the four proposed quality dimensions and is strongly

1 https://cran.r-project.org/web/packages/understandBPMN/index.html
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associated with process model understandability. The other three are fitness,
precision and generalisation [4]. The process model that is the easiest to com-
prehend while explaining all the observed behaviour should be chosen, if one
wants to optimize for simplicity [4]. Simplicity is most of the times calculated
using process model size, structuredness and entropy [4]. The process model size
is equal to the number of nodes in a model [9, 10, 11]. The structuredness is
related to the mismatches in gateways. If a model has a parallel split gateway
combined with an exclusive join gateway, it scores worse in terms of structured-
ness than a model with matching gateways such as a parallel split gateway
combined with a parallel join gateway [5]. The entropy refers to the distribution
and use of different components of a process model. An example of this entropy
is the connector heterogeneity [3, 11, 12, 13]. In addition to these metrics, the
control flow complexity and the cyclomatic metric of McCabe are proposed for
measuring simplicity [5]. The control flow complexity is a measure which takes
into account the complexity of the behaviour of a process model stemming from
the use of different gateways and the number of outgoing sequence flows of these
gateways [3, 14, 5, 15, 11]. The cyclomatic metric takes into account the num-
ber of activities and the complexity of the behaviour resulting from exclusive
gateways [5].

In the field of BPM, understandabillity is defined as the extent to which the
reader can make correct conclusions about the process model [13]. Many more
metrics are proposed for measuring the understandability of process models in
the field of BPM in comparison with the field of process discovery. Not all metrics
are related to the control-flow perspective. Examples are the connectivity level
between pools and the number of swimlanes and pools [16, 17, 12], which belong
to the organisational perspective. In our study, we identified 18 understandabil-
ity metrics related to the control-flow perspective. These metrics (column 1)
together with their references (column 2) can be found in table 1.

3 Research methodology

In order to reach the results of our research paper, we performed several steps.
The first step was the identification of existing understandability metrics belong-
ing to the control-flow perspective (section 3.1). The second step was gathering
the data, which consisted of BPMN models (section 3.2). The third and last step
was conducting the factor analysis (section 3.3).

3.1 Metrics identification

We conducted a literature review of academic journals and conference papers for
identifying existing understandability metrics of the BPM domain. To search for
the scientific articles, Google Scholar was used with the keywords ”understand-
ability”, ”complexity”, ”BPMN”, ”process models”, ”metrics” and ”influence”.
This resulted in 68 articles from journals and conference proceedings and one
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Metric References

Process model size [9, 10, 11, 18]
Number of empty sequence flows [19]
Number of duplicate tasks [20]
Density [3, 11]
Coefficient of network connectivity [3, 11, 12]
Average connector degree [3, 11]
Maximum connector degree [3, 11]
Sequentiality [3, 11, 12, 15]
Cyclicity [11, 13]
Diameter [3, 11, 12, 13]
Depth [9, 11, 15, 21]
Token split [3, 11, 13]
Control flow complexity [3, 14, 15, 11]
Connector mismatch [3, 11, 15, 21]
Connector heterogeneity [3, 11, 12, 13]
Separability [3, 11, 13]
Structuredness [3, 11, 13]
Cross-connectivity [22]

Table 1. Understandability metrics and references with definition

doctoral thesis. All found articles were read and the proposed understandability
metrics were listed. Only the understandability metrics belonging to the control
flow perspective were selected. The journals and conference proceedings which
had a relevant metric can be found in table 2. Since a software implementation
of some metrics lacked, we implemented all metrics as an R package [6].

Journals

Business & Information Systems Engineering
Decision Support Systems
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
IEEE Transactions on Industrial Informatics
International Journal of Computer Science and Network Security

Conference Proceedings

Advanced information systems engineering
Proceedings of IEEE International Conference on Cognitive Informatics
Proceedings of International Conference on Business Information Systems

Table 2. Journals and conference proceedings with relevant metrics

3.2 Data

The sample of observations used for the factor analysis consisted of two types
of models. Models of the first type were made by people. The source is BPM AI
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(Business Process Management Academic Initiative). This repository contains a
large number of models created by students and staff of academic institutions
[23]. We selected the models which were made in BPMN 2.0 and which had
a connectedness of at least 50%. Afterwards, the models were filtered on the
occurrence of boundary events and on modelling mistakes such as unconnected
activities. These models are not within the scope of this analysis, because we are
focussing on the understandability of models within the context of a process dis-
covery algorithm. The current process discovery algorithms cannot yet discover
processes with boundary events or processes with many unconnected activities.
The number of resulting models after filtering is 4150.

Models of the second type were created using the PTandLogGenerator [24].
One sample of 300 models was generated. The maximum number of activities was
set to 20. The minimum and mode were respectively 2 and 10 activities. This
resulted in process trees which were converted to BPMN models. As process
trees have a different notation for representing process models than BPMN, the
translated BPMN models can have a representational bias [25]. Mismatches in
gateways can for example not be represented in process trees. The bias will not
pose a problem, because the first type of models is directly made in BPMN.

We chose to use two types of models, in order to increase the generalisation
of our analysis. As we want to get an insight into the underlying dimensions of
the understandability of models discovered using a process discovery algorithm,
it is not a good approach to only use models made by people. However, not
all possible constructs can be generated using the PTandLogGenerator such as
mismatches in gateways. Hence, we chose to combine BPMN models created by
process modellers with automatically generated models.

After having gathered all the models, the metrics were calculated for each
model and some descriptive statistics such as the mean and standard deviation
were calculated. These statistics were useful for getting a first overview of the
data. The descriptive statistics can be found in table 3. We included the mean,
median, standard deviation, minimum and maximum.

A couple of interesting patterns can be discovered from the descriptive statis-
tics. There are some models which can be considered an outlier in terms of size,
because the average is bigger than the median. Not many models have empty se-
quence flows or duplicate tasks. The models from the PTandLogGenerator have
even no empty sequence flows, but some of them have duplicate tasks.

The density is rather small, because the density ranges from zero to one
with one representing a dense model. This metric represents the percentage of
sequence flows compared with the theoretical maximum number of sequence
flows [11, 3]. The density is correlated with the sequentiality which determines
how sequential the process is. As the density is rather small for most models,
the processes are to some extent sequential.

Processes do have non-sequential parts which are gateways or activities with
more than three connected sequence flows. On average, a gateway or activity
with multiple incoming or outgoing sequence flows has three connected sequence
flows. In addition, the models have sometimes a mismatch in gateways, even
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Table 3. Descriptive statistics for each metric of all process models included in the
sample

Metric Mean Median Std Min Max

Size 21.624 18 15.378 1 134
# empty sequence flows 0.021 0 0.223 0 7

# duplicate tasks 0.531 0 1.861 0 41
Density 0.09 0.062 0.112 0.001 1

Coefficient of network connectivity 0.976 1 0.213 0.037 2.95
Average connector degree 2.727 3 1.062 0 8

Maximum connector degree 3.112 3 1.454 0 12
Sequentiality 0.336 0.286 0.26 0 1
Token split 1.208 0 1.984 0 42

Control flow complexity 6.26 4 7.178 0 129
Connector mismatch 1.369 1 1.819 0 34

Connector heterogeneity 0.387 0 0.444 0 1
Cyclicity 0.069 0 0.151 0 0.897

Diameter metric 10.929 8 9.507 0 85
Depth metric 1.392 1 1.352 0 13

Separability metric 0.183 0.077 0.246 0 1
Cross-connectivity 0.104 0.077 0.103 0 0.75

Structuredness 0.847 0.966 0.286 0 1

though this number is also quite small. The number of activities being part of
an explicit loop is limited. Even more than 50% of the processes do not have
any explicit loops. Some parts of the processes are also separable, because the
separability metric is on average 0.183. The combination of this metric, with the
results from the depth and sequentiality indicate that there are several gateways
used in the process models. Even though there are several gateways used, they
are most of the times modelled in the right way. This conclusion is derived from
the structuredness, which is on average 0.847. This means that the gateways
most of the time match and that most explicit loops are modelled using exclusive
gateways.

3.3 Factor analysis

A first step when performing a factor analysis is choosing the type of factor
analysis. Several types of factor analyses exist and are used for different pur-
poses. We chose an R-type common factor analysis, because the main goal is the
discovery of the underlying dimensions of the metrics. This type only considers
the shared variance, which defines the structure of the variables [26].

The sample size of 4450 observations is sufficient to perform an exploratory
analysis. It is recommended to have at least 50 observations and at least 20 obser-
vations per variable to perform a factor analysis [26]. Therefore, this requirement
is fulfilled.
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An important assumption when performing a factor analysis is that there is
enough intercorrelation between the variables [26]. We performed two tests to
validate this assumption: the Bartlett’s Test of Sphericity and the Measure of
Sampling Adequacy (MSA) values [26]. When the Bartlett’s Test of Sphericity
is statistically significant, it indicates that there is enough overall correlation
between the variable to perform a factor analysis. The overall and individual
MSA values indicate also whether there is enough intercorrelation. As MSA
values increase, when the sample size increases [26], we used a cut-off of 0.6.
Variables which had a lower MSA value were discarded, because they do not
exhibit enough intercorrelation with the other variables. This is unacceptable in
the context of a factor analysis and reduces the quality of the factor solution.

The number of factors is determined using the scree test. After having de-
termined the number of factors, the factor analysis was performed iteratively.
During each iteration, the communalities of the variables were assessed. The
communality determines the amount of variance which is included in the factor
solution [26]. Some variables were again left out, because their communalities
were smaller than 0.3 and this can decrease the reliability of the analysis [27].

To make the interpretation easier, a factor rotation was performed. The cho-
sen rotation was the varimax rotation. As this is an orthogonal rotation, the
factors are not correlated anymore, which is in contrast with the oblique fac-
tor rotation methods [26]. We chose an orthogonal factor rotation, because this
allows the development of new uncorrelated scales for measuring the understand-
ability of process models with regards to the control-flow perspective [26].

The removal of the variables due to low communalities and low MSA values
does not pose a problem in the context of this factor analysis, because we are
interested in the underlying dimensions of the understandability metrics. The
metrics which are not included into the factor analysis can still be regarded as
separate dimensions for each omitted variable.

4 Results

The standard deviations of the variables in table 3 indicate that we can perform
a useful factor analysis, because a necessary condition for a factor analysis is
a sufficient amount of variance in the data [26]. In addition, there is enough
intercorrelation between the variables, because the Bartlett’s Test of Sphericity is
statistically significant at 0.01. The overall MSA value is 0.77 and the individual
MSA values range from 0.61 to 0.87. We discarded no variable due to a low MSA
value.

We determined the number of factors using the scree test by making a plot.
The eigenvalues are assigned to the Y-axis, while the factor number is plotted
on the X-axis. The point where the curve starts to straighten out indicates the
number of factors [26]. The scree test criterion implies that four factors should
be chosen (figure 1). Note that the latent root criterion, which states that the
number of factors should equal to the number of factors with eigenvalues bigger
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Fig. 1. Scree plot for determining number of factors

than one [26], implies that two factors should be chosen. However, this number
of factors is deemed too low to make a useful interpretation.

Table 4. Factor communalities

Metrics Communalities

Size 0.706
Density 0.613

Coefficient of network connectivity 0.756
Average connector degree 0.995

Maximum connector degree 0.859
Sequentiality 0.527
Token split 0.483

Control flow complexity 0.676
Connector mismatch 0.355

Connector heterogeneity 0.331
Cyclicity 0.460
Diameter 0.995

Depth 0.558
Separability 0.352

Cross-connectivity 0.337
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Not all variables are used for the factor analysis, because some variables
had communalities which were too low. However, the factor analysis was again
executed using the 15 variables which had communalities bigger than 0.3. These
variables with their corresponding communalities can be found in table 4. The
variables with a communality lower than 0.3 are the number of empty sequence
flows, the number of duplicate tasks and the structuredness.

Table 5. Factor loadings

Factor 1 Factor 2 Factor 3 Factor 4

Size 0.810
Density 0.745

Coef. of network conn. 0.531 0.450
Avg. connector degree 1.174
Max. connector degree 0.888

Sequentiality −0.621
Token split 0.705

CFC 0.846
Connector mismatch 0.613

Connector heterogeneity 0.493
Cyclicity 0.693
Diameter 0.982

Depth 0.489
Separability −0.389

Cross-connectivity −0.440

In table 5, the factor loadings can be found. The factor loadings determine
how the metrics correlate with a given factor [26]. The higher the absolute value
of the loading, the bigger the correlation. We removed the loadings which had
an absolute value lower than 0.35. These loadings are considered insignificant,
given our big sample size [26].

5 Discussion

Four main dimensions are discovered as a result of the factor analysis. It should
be emphasized that some metrics were not included in the factor analysis, be-
cause they measure different things than what is captured by the main dimen-
sions. These metrics are the number of empty sequence flows, the number of
duplicate tasks and the structuredness. Each metric can be considered a differ-
ent dimension for the purpose of this factor analysis.

We give each main dimension a label and explain why the metrics belong to
the factors. Also an intuitive interpretation of what the dimension captures is
given. Afterwards, the dimensions are related to the current simplicity metrics.
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5.1 Dimension 1: Token behaviour complexity

The size, token split, control flow complexity, connector mismatch, connector
heterogeneity, seperability and cross-connectivity all belong to dimension one.
We label it token behaviour complexity. The token behaviour complexity includes
the number of tokens which are consumed by activities. A token consumption
happens when an activity of the model is executed. The bigger the size of a
model, the more token consumptions can occur, because there are more activ-
ities. The token split measure indicates in which activities and gateways the
tokens are split [3, 11, 13]. If tokens are split, more token consumptions can oc-
cur. The control flow complexity is closely related to the token split but assigns
different weights to the type of gateways [14]. When a mismatch occurs, the to-
ken behaviour can become more complex as well. If for example a parallel split
gateway is matched with an exclusive join gateway, multiple tokens will continue
flowing through the model and many activities will be repeated and executed
in parallel. The connector heterogeneity also belongs to this dimension, because
if there are several types of connectors, the complexity of the token behaviour
increases [3, 11, 12, 13]. The higher the heterogeneity, the higher the probability
that there are inclusive and parallel gateways present in the model. The sep-
arability measures how easy it is to split the model into several independent
parts [3, 11, 13]. If it is easier to split the model, the token behaviour is less
complex, and therefore this metric is negatively related to the token behaviour
complexity. Also the cross-connectivity is negatively related, because the token
behaviour becomes more complex when the value of this metric decreases. In
that case, there is a higher probability of several types of gateways.

The token behaviour complexity captures the number of token consump-
tions for one process execution. In addition, it takes into account the com-
plexity of the routing of the tokens. When exclusive gateways are used, the
routing becomes more complex, which reduces for example the separability and
cross-connectivity. The token behaviour complexity is high, when the process
model contains many gateways and activities.

5.2 Dimension 2: Node IO complexity

The coefficient of network connectivity, the average and maximum connector
degree and the sequentiality belong to dimension two. We give this dimension
the label node incoming outgoing complexity or node IO complexity. The node
IO complexity takes into account the number of incoming and outgoing sequence
flows for a given node. If there are more incoming and outgoing sequence flows
on average for activities and gateways, the overall number of sequence flows
increases and hence the coefficient of network connectivity increases. The same
reasoning can be applied for the average and maximum connector degree. The se-
quentiality negatively loads on dimension two, because if a process is sequential,
it consists only of activities with exactly one incoming and outgoing sequence
flow [3, 11, 12, 15]. This means that there are less outgoing and incoming flows
of nodes.
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The node IO complexity captures the number of connected sequence
flows with activities and gateways.

5.3 Dimension 3: Path complexity

Dimension three is labelled the path complexity. This dimension includes three
metrics: cyclicity, diameter and depth. We define a path in a similar way as a
path in graph theory [28] and not as a trace. This means that if there is a parallel
or inclusive split gateway, only one of the outgoing sequence flows is chosen and
becomes part of the path. In addition, each path starts with a start event and
ends with an end event. The diameter is the length of a path [3, 11, 12, 13] and
the bigger the length, the larger a path. When there are loops, the path becomes
longer and more complex [11, 13]. The complexity of the paths also increases
when the depth increases. If the depth increases, there are more gateways, which
make the path longer.

We define the path complexity as the length of a path in the process
model allowing one repetition of a loop. This definition gives the most
weight to the diameter, while taking into account cyclicity and depth just as
the factor loadings do. When the path complexity is high, there is a long path
present in the model, or a path with many and long loops.

5.4 Dimension 4: Degree of connectedness

Dimension four gets the label degree of connectedness. This dimension includes
the density and the coefficient of network connectivity. A process model diagram
is more connected, when it has more sequence flows cet. par. the process model
size. The density of a model captures this, because it is calculated by dividing the
number of sequence flows with the process model size [3, 11]. Also the coefficient
of network connectivity is linked with the dimension. This metric is calculated
in a similar way, but the denominator is replaced with the theoretical maximum
number of sequence flows. The theoretical maximum is calculated by multiplying
the process model size with the process model size minus one [3, 11, 12].

We define the degree of connectedness in the same way as the density.
When there are many flows given the process models size, the degree of
connectedness is high.

5.5 Relation of understandability dimensions with simplicity metrics

The simplicity of a process model is often measured using the size of the process
model, the structuredness and the entropy [4]. Both the size and the entropy,
which is named the connector heterogeneity in table 5 belong to dimension one,
token behaviour complexity. The structuredness of the process model is not
included in the factor analysis, because the communality is too low. The struc-
turedness can be regarded as a separate dimension.

In addition to the three most used simplicity metrics, the control flow com-
plexity and the cyclomatic metric of McCabe are proposed [5]. The control-flow
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complexity is part of dimension one as well. The cyclomatic metric of McCabe
takes into account the number of activities and the complexity in behaviour re-
sulting from exclusive gateways. These concepts are mainly related to the token
behaviour complexity.

We can conclude from the previous paragraphs that most simplicity met-
rics are associated with the token behaviour complexity. The current simplicity
metrics all omit the node IO complexity, the path complexity and the degree of
connectedness. Also empty sequence flows and the number of duplicate tasks are
omitted. As empty sequence flows are not part of a process model resulting from
a discovery algorithm, this metric can be considered irrelevant in this context.

To calculate the simplicity, we propose that at least 6 metrics are used: one for
each dimension and two for the metrics which are not part of the factor analysis.
We recommend to use the metrics with the highest loadings until further research
is conducted. These metrics are control-flow complexity for token behaviour
complexity, average connector degree for node IO complexity, diameter for path
complexity and density for the degree of connectedness. In addition, the number
of duplicate tasks and structuredness should be used.

6 Conclusion

When someone has discovered a process model using a process discovery al-
gorithm, the model should be evaluated using several quality dimensions. The
quality dimension simplicity is often measured with the size of a process model,
the structuredness and the entropy. In addition, metrics such as the control-
flow complexity and the cyclomatic metric of McCabe are proposed to measure
simplicity. The current metrics do not take all dimensions of the process model
understandability into account even though simplicity is closely related to the
process model understandability. This conclusion can be made based on the re-
sults of an exploratory factor analysis of 18 understandability metrics, which all
belong to the control-flow perspective.

Four dimensions were discovered: token behaviour complexity, node IO com-
plexity, path complexity and degree of connectedness. Three of the 18 metrics
were not included in the analysis, because these variables had too low commu-
nalities. These metrics were the number of empty sequence flows, the number of
duplicate tasks and the structuredness. As they measure different things than
the discovered dimensions, they can each be considered a separate dimension.

Most simplicity metrics only load on the token behaviour complexity dimen-
sion. This is the case for the process model size, the entropy, the control flow
complexity. The cyclomatic metric of McCabe is also related to the token be-
haviour complexity. Structuredness was not part of the factor analysis. A better
approach for calculating the simplicity is using six metrics, of which four belong
to the discovered dimensions.

There is still room for further research. The discovered dimensions can be
validated using a confirmatory factor analysis. This analysis can be done with
models resulting from several discovery algorithms. It is also not yet clear how big
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the correlation is between the dimensions and the simplicity metrics. Moreover,
this paper is a starting point for the development of a single understandability
metric which captures all dimensions belonging to the control-flow perspective.
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