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Abstract. Aging population ratios are rising significantly. Meanwhile,
smart home based health monitoring services are evolving rapidly to
become a viable alternative to traditional healthcare solutions. Such ser-
vices can augment qualitative analyses done by gerontologists with quan-
titative data. Hence, the recognition of Activities of Daily Living (ADL)
has become an active domain of research in recent times. For a system to
perform human activity recognition in a real-world environment, multi-
ple requirements exist, such as scalability, robustness, ability to deal with
uncertainty (e.g., missing sensor data), to operate with multi-occupants
and to take into account their privacy and security. This paper attempts
to address the requirements of scalability and robustness, by describing a
reasoning mechanism based on modular spatial and/or temporal context
models as a network of ontologies. The reasoning mechanism has been
implemented in a smart home system referred to as Arianna™. The pa-
per presents and discusses a use case, and experiments are performed on
a simulated dataset, to showcase Arianna™’s modularity feature, inter-
nal working, and computational performance. Results indicate scalability
and robustness for human activity recognition processes.

Keywords: Activities of Daily Living - Ontology Network - In-home
healthcare.

1 Introduction

In recent times, there is a rise in population of elderly individuals, as it is esti-
mated that approximately 20% of the world’s population will be age 60 or older
by 2050 [9]. This motivates the research community and technology companies to
provide, at home, healthcare services for the elderly, such that they can live safely
and independently for longer periods of time. The ability to perform Activities
of Daily Living (ADL) without assistance from other people can be considered
as a reference for the estimation of the independent living level of the elderly
individuals [13]. Nowadays, geriatrists judge the well being of elderly individuals
by observing them while they perform ADL, such as walking and dressing. When
possible, they measure variations in both space and time domains, needed to per-
form particular ADL. This is done in sessions at certain time intervals, e.g., each
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year, to make quantitative judgments. But for some ADL, e.g., eating, they rely
on qualitative judgments of how the activity is performed, based on question-
naires. Instrumental ADL (IADL) are taken into account as well, with similar
qualitative observations, since they require a certain level of planning capabilities
and social skills, such as housekeeping, cleaning, and cooking.

A quantitative assessment of such qualitative data can be provided by a
smart home specialized for elderly care, as it can recognize activities performed
throughout the day and report to geriatrists. This would enable accurate health
assessments based on continuous evaluations. As presented in [14, 5], depending
on the kind of sensors employed in the smart home, activity recognition (AR)
can be performed using data originating from vision, inertial, distributed sensors
or a combination of them. However, AR is enabled by a priori AR modeling,
and for this the approaches used in the literature are mostly of two types, one
being data-driven, and the other being knowledge-driven. A discriminative (e.g.,
Support Vector Machines and Artificial Neural Networks) type, data-driven ap-
proach is used when complex, multi-modal data streams are involved, e.g., data
originating from cameras [18] and accelerometers [3], for posture recognition and
fall detection.When simpler data are involved (e.g., while using distributed sen-
sors) either a generative (e.g., Hidden Markov Models and Dynamic Bayesian
Networks) type, data-driven approach is taken [10], or a knowledge-driven ap-
proach is adopted [17,6]. Although some sensors (e.g., cameras) provide high
accuracy for monitoring individuals; due to privacy issues, simpler sensors (e.g.,
Passive Infrared (PIR), light, and Radio-Frequency Identification (RFID)) are
largely used.

Learning (or development) of AR models, in data-driven approaches, happens
by training over datasets, whereas in knowledge-driven approaches it is done by
explicitly encoding knowledge, typically in the form of set of axioms, used for AR
based on sensor data. In terms of modularity with activity models, the former
approach is not friendly since, if a new activity is to be introduced into the
system, a new dataset has to be collected and the entire training process has
to be performed. Whereas the latter approach is modularity friendly as a new
activity model’s knowledge can simply be added as a set of axioms and rules.

In this paper, we describe a knowledge-based approach for domain modeling
(i.e., of context/activity) and reasoning (i.e., context/activity recognition), which
is currently part of our Arianna®™ smart home framework.The approach adopts:
(1) Ontology Web Language (OWL), based on description logics (DL) [4], which
is a fragment of first order predicate logic, designed to be as expressive as possi-
ble while retaining decidability. It allows to describe a given domain by defining
relevant concepts (in the terminological box or TBox), and by asserting prop-
erties of individuals that are instances of those concepts (in the assertional box
or ABox). Reasoners can then be used to derive facts, i.e., make implicit knowl-
edge explicit, by reasoning mechanism [11] based on subsumption of concepts
and instance checking. (2) Rules based on the Semantic Web Rule Language
(SWRL) [12], which allow the system to perform query and manipulations as a
unique operation based on logic conjunctions.
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Due to issues of language expressivity, OWL-DL reasoners do not perform
temporal reasoning. Nevertheless, the idea of using OWL for AR can be found in
the literature and [15] highlights that when ontological techniques are extended
with even simple forms of temporal reasoning, their effectiveness increases. More-
over, symbolic temporal concepts have been used for AR [8], and this is usually
done using Allen’s algebra [2], which allows DL reasoners to consider instances
of time belonging to particular intervals. In the literature, some attempts [17,
6] at ontology-based AR take temporal reasoning into account but accumulate
temporal instances. Hence, their search space grows exponentially [16] with re-
spect to the number of axioms in the ontology, which is an issue for large-scale,
real-time applications. In this paper, we take basic temporal aspects for AR into
account, without accumulating time instances within ontologies.

In a real-world environment, we argue that AR systems must carefully guar-
antee scalability and robustness requirements. On the one hand, scalability can
be achieved when (i) the system is modular with respect to activity models and
(ii) types of sensors, as well as, (iii) is able to manage computational resources
and memory, since they affect recognition performance in long-term applica-
tions [7]. On the other hand, robustness, which is a more strict requirement to
be achieved, strongly depends on the design of the activity models. We also ar-
gue that a redundancy of models, with which we can assess the same activity,
can increase the overall system’s robustness. The above-listed requirements lead
respectively, to the issues of: (i) designing modular activity models as part of
an ontology network, which is able to infer activities based on the occurrence of
events, (ii) designing a system’s architecture that incorporates distributed sen-
sors data, and (iii) designing the activity models such that they represent the
context over time, and evaluate them with the most suitable behavior (e.g., with
a scheduled frequency).

This paper extends the work presented in [6], wherein we propose to use a
hierarchy of ontologies, that decouple logic operations for semantically describing
the context and support modular composition of reasoning behaviors for online
activity recognition. Here, we present an AR-enabled smart home system from a
software architecture perspective, and an implementation of a relevant use case,
which is tested based on simulated data from distributed sensors. Furthermore,
we address the issues presented above and highlight the modularity features and
performance of Arianna™, while reasoning over an ontology network.

The paper is organized as follows. Section 2 discusses the modular ontology
network. Arianna™’s architecture is presented in Section 3, whereas Section 4
discusses an implementation of a use case. Finally, conclusions follow.

2 Activity Detection

2.1 Dynamic Ontology Networks

In [6], an ontology network is defined as a graph G, wherein the set of nodes N
are ontologies (each with an independent DL reasoner) containing statements of
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the form (1), i.e., having a Boolean state s and a generation timestamp ¢:
Statement C=7 hasState(s) =; hasTime(t) (1)

and are used to describe a specific part of the context, while the set of directed
edges E are communication channels used for sharing statements between the
nodes. Hence G is of the form:

G ={N,E} 2)
where, N = ny,no,...,n,, such that each node specializes in reasoning within
a particular context, and F = €12,€13,...,€11,€21,€23,...,€2n, ., Emn, Such

that the index of each edge signifies the direction of flow of statements, e.g.,
in eyo statements flow from n; to ns. Consider an event, indicating that water
is flowing from the sink in the kitchen. It can have different interpretations for
a system aimed at recognizing activities such as cooking or cleaning. Instead
of recognizing them actively from the same representation, with an ontology
network it is possible to decouple their models in order to reason upon them
based on an event or set of occurring events. Where, an event occurs based on
rules that aggregate statements by logical conjunction. We show in the following
Sections that this approach enforces system’s modularity with respect to activity
models, and if the network is such that it evaluates only the models related to a
specific part of the overall context, then it also decreases the computation time.

The system checks the statements in the network with a given frequency and,
when an event is detected, specific external procedures are executed in order
to: (i) move statements from one node to another via edges, and (ii) evaluate
models for activity recognition. For instance, statements could be generated from
distributed sensors (e.g., detecting that Adam is in the kitchen at 8:00 am), then
the system aggregates this information with prior knowledge to detect events
(e.g., Adam is in the kitchen in the morning). When such an event occurs, the
model for detecting that Adam is having breakfast gets evaluated by checking
statements and their temporal relations within the model.

Moreover, activity models can generate statements, e.g., indicating that Adam
had (or did not have) breakfast at a certain time, and hence can trigger new
events, which can further be used to describe the context and evaluate mod-
els via procedure executions. A formal algebra of statements, used for defining
events that execute procedures based on the context, has been proposed in [6].

2.2 A Network of Activity Detectors

For the sake of description, we consider a simplified ontology network O as
shown in Figure 1. In it there are 6 nodes; n; is a location-based contextual-
izing model called Place Ontology P and ns,...,ng are called activity models
A;, where i = 1,...,5 respectively. Nodes are designed such that statements
within P take into account the spatial aspect, and statements within A; take
into account the spatial and temporal aspects of AR. A; are listening for par-
ticular events that P generates, and the edges that link them are the following
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Making breakfast |
lunch | dinner

(A1)

Watching TV (A5)

event:
Human.isIn (Kitchen)

Human.isIn (BedRoom)

Human.isIn(LivingRoom)
event:

Place Ontology
P)

event:

event:

Movement during

nap (A4)

Bathroom visit

Human.isIn (BathRoom) (AS)

Taking a nap(A3)
event:
Human.isIn (BedRoom)

Fig. 1. A simplified ontology network O.
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Fig. 2. Visual representation of statements that make up the A2 model: statements are
shown as vertical arrows where dashed arrows indicate information from P, and solid
arrows indicate statements generated by this model. Statement indexes indicate sensors

influencing the state of that statement, while the temporal restrictions are shown as
black lines.

E = eq9, €13, €14, €15, €16. The nodes communicate and statements flow between
them via edges, such that, A; get activated and then evaluated by their inde-
pendent reasoners, when a particular event occurs, as depicted by the graph
in Figure 1. If the evaluation of an activity model gets satisfied, its proce-
dure generates a new statement to notify the recognition of an activity, e.g.,
WatchingTV.{hasState(True), hasTime(19:28)}.

Within activity models, particular statements and temporal relations, must
get satisfied for successful activity recognition. These are shown for As, which
recognizes the activity WatchingTV, in Figure 2. In it, statements are verti-
cal arrows pointing upwards to indicate a True state and downwards for False.
These statements are either transferred from another node (e.g., dashed arrows
represent statements coming from P), or are generated by this node (e.g., solid
arrows are the statements generated by As) and are indicated along with a name
and an index or a range of indexes. A name is denoted by a capital letter and
the sensors related to it are shown as the index. Statements are annotated along
a relative x-axis, in order to restrict their temporal relations through black lines
ending with a circle. In the Figure, we can see 4 statements: (i) statement R,
which is a dashed arrow of green color, is information coming from P; it signi-
fies isIn LivingRoom.{hasState(True), hasTime(19:25)}, where the index
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p2 indicates that the sensor PIR2 influences the state of this statement; (ii) state-
ment Sp2, which is a dashed arrow of orange color, is information coming from P;
it signifies that there is some motion in the living room after d5 time units, naively
representing the idea that, if Adam is sitting on the sofa then he is not sitting
still; this statement can be replaced by a much robust statement, for instance,
sitting.{hasState(True), hasTime(19:26)}, given that there may be other
sensors in the system (e.g., wearable sensors, pressure sensors in the sofa); (iii)
statement Sy, which is a dashed arrow of blue color, is information coming from
P; it signifies highBrightnessTV.{hasState(True), hasTime(19:28)}, where
the indexes b indicates that brightness sensor influences the state of this
statement; (iv) statement W, which is a solid arrow of red color, is generated
when the overall model is satisfied, it signifies WatchingTV.{hasState(True),
hasTime (19:28) }; this happens when statements S,» and S} are generated after
d2 time units with respect to the Ry statement.

With respect to the AR system presented in [6], the difference in the im-
plementation of Arianna™ is two-fold. Firstly, in [6] time-related instances get
accumulated in the models for the purpose of temporal reasoning, and after an
activity is recognized, the statements are removed to reduce the increasing com-
plexity of the ontologies. In Arianna™, when A; receive statements from P the
values of old instances get updated, if they are available. This has the effect of
not accumulating statements in A;, i.e, the procedure related to it is in charge of
updating and evaluating it, without accumulating time-related instances. Such a
procedure performs temporal reasoning using both symbolic relations (inferred
by the DL reasoner) and numerical/logical operations on the timestamps (in-
ferred externally). This approach of using an external reasoner has the affect of
overcoming DL limitation, such as the issue of finding the minimum value in a
set of numbers under the open world assumption. Secondly, events are queries
that return Boolean value when certain statements are satisfied, or not, in an on-
tology of the network. In [6] events are semantically defined in an upper-ontology
that schedules related procedures if their query is verified. Whereas in Arianna™
rather than having an upper-ontology, we have designed a system’s architecture
that incorporates the object-oriented programming (OOP) paradigm to execute
A; procedures with an event-listener pattern.

3 Arianna™’s Architecture

3.1 From Sensing to Context Awareness

Figure 3 shows the system’s architecture. It recognizes activities with O as de-
scribed above; it comprises of the sensing, aggregation, reasoning and application
layers. In this Section, we focus on the interfaces between those layers, which
enable the modular features of Arianna™ as highlighted in Section 2. Firstly, in
the reasoning layer, O is used over time for recognizing activities based on data
taken from the database (DB), which is getting accumulated with the latest sen-
sor values and timestamps by the aggregation layer, which in turn is connected
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Fig. 3. Arianna™’s architecture where the link rsd signifies the flow of raw sensor data,

asds signifies the flow of aggregated sensor data in the form of statements, ias signifies
inferred activity statements and f signifies frequency.

to the physical sensory layer. Finally, the application layer is used to easily in-
terface geriatricians, other medical staff, assisted people and their relatives with
Arianna™’s services.

The reasoning layer is Arianna™’s core. It is made up of O and its internal
working is as described in Section 2.2. There are two components in the working
of this layer. The first is the initialization of O (i.e, TBox of ontologies are defined
as nodes. While procedures and events are defined as edges). The second is the
frequency f, with which, in O, the procedure of P takes in aggregated sensor data
statements (link asds) from the database, updates the ABox, reasons (spatially)
with knowledge within P, and declares occurrence of an event, if any. If the
declared event is being listened for by one or many A;, then their procedures get
activated. Once an activity model’s procedure is active, it takes in statements
from P and updates its own ABox, then reasons (spatially and temporally) with
knowledge within the model and declares the recognition of a user activity. This
completes a chain of reasoning processes (i.e., P plus an activity model), and
if an activity is recognized in the process, then the procedure associated with
the model saves the inferred activity statement (link ¢as) back in the database.
As the reasoning process has not negligible computational time, if it is simply
performed every time new sensor data statements arrive in the database, and
if the frequency with which the new data arrives is faster than the reasoning
process, then the system would not meet the near real-time constraint. Hence,
we need f, to have control over such a process. It deals with the computational
complexity issue of the DL reasoner which performs the reasoning in O.

From the application layer, on the one hand, geriatricians could visualize
statistics related to the activities performed and explore further details in terms
of statements (link ias), if necessary. On the other hand, the elderly individual
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could be stimulated with suggestions based on activity recognition, for instance,
through dialogue-based interfaces via virtual coaches. Furthermore, the database
also contains detailed logs of statements that were in O, and therefore assistive
or medical staff can access those statements to provide online services to the
assisted individuals. For instance, a future scenario of in-home healthcare would
be such that, if Adam is asked by his doctor about the number of times he visits
the bathroom during the night, Adam’s reply can be augmented by quantitative
data from the smart home, which can help the doctor in making healthcare-
related decisions.

The aggregation layer takes raw sensor data (link rsd) from heterogeneous
sensors in the sensing layer and by using dedicated perception modules, pro-
cesses the raw data to generate statements of the form (1). Then, it stores
aggregated sensor data statements (link asds) in the database. This layer relies
on a communication middleware module to channel all the Boolean data the
sensors generate, and stores them in the database, if simple distributed sensors
are considered. Furthermore, it relies on classification modules (e.g., obtained
via machine learning approaches) that can provide statements with semantics
(e.g., sitting down, lying down, etc), and stores them in the database, i.e, if sen-
sors generating more complex data streams are considered. Remarkably, having
a formal structure for a statement not only assures a modular evaluation of
activity models, but also enables the overall AR system to take heterogeneous
sensors into account. Statements are stored in the database at a frequency fs,
and moreover each perception module in this layer can have its own frequency
at which it processes the raw sensor data to generate statements and store them
in the database.

It is noteworthy that the frequencies fs and f, are independent of each other,
such that, (i) the aggregation layer stores latest aggregated sensor data state-
ments in the database at a frequency fs, which can be unique for different
perception modules, and (ii) the reasoning layer reasons based on the latest
statements that are available to it from the database, with a frequency f,.

4 Use Case Setup

4.1 Activity Models and Simulation Setup

The use case considered in this paper utilizes all A; in O, as shown in Figure 1.
Their description is as follows. A; infers Making breakfast, lunch or dinner.
It is listening for the event 3 Human.isIn(Kitchen). It generates one of the
statements, Making breakfast or Making lunch or Making dinner, when the
assisted person uses furniture (e.g., the kitchen cabinet), after being present
in the kitchen for a minimum time period of 60 seconds, and if that time pe-
riod is inside one of the a prior: defined intervals of the day, i.e., morning,
afternoon or evening. As infers Watching TV. It is listening for the event 3
Human.isIn(LivingRoom). It generates the statement Watching TV when the
occupant uses furniture (e.g., the TV), after being present in the living room
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Fig. 4. The simulated dataset used in implementation of the use case.

for a minimum time period of 60 seconds, during any time of the day. A3 in-
fers Taking a nap in morning, afternoon or evening. It is listening for the event
3 Human.isIn(BedRoom). It generates one of the statements Taking a nap in
morning or Taking a nap in afternoon or Taking a nap in evening, when
the assisted person uses furniture (e.g., the bed), after being present in the bed-
room for a minimum time period of 60 seconds, and if that time period is inside
one of the intervals of the day, i.e., morning, afternoon or evening. A, infers
Movement during nap. It is listening for the event 3 Human.isIn(BedRoom). It
generates the statement Movement during nap when the person uses furniture
(e.g., the bed) and the PIR associated with the bed remains active even af-
ter 60 seconds have passed on the bed, during any time of the day. As infers
Bathroom wvisit in morning, afternoon, evening or night. It is listening for the
event 3 Human.isIn(BathRoom). It generates one of the statements Bathroom
visit in morning or Bathroom visit in afternoon or Bathroom visit in
evening or Bathroom visit in night, when the assisted person uses furniture
(e.g., the toilet seat), after being present in the bathroom for a minimum time
period of 60 seconds, and if that time period is inside one of the intervals of the
day, i.e., morning, afternoon, evening or night.

The use case is implemented by generating a simulated dataset with values
and timestamps of a set of PIR sensors and a brightness sensor. It depicts a
scenario where an assisted person performs stereotypical activities that are held
for eight minutes. The dataset is kept small so as to do extensive in-depth per-
formance testing. The simulation is performed by updating the database with
simulated sensor data in the form of statements (mimicking the link asds con-
necting the aggregation layer and the database). As shown in Figure 4, Adam
enters the kitchen, and after spending a minute in the kitchen, he opens the
door of the kitchen cabinet and then closes it. He is in the kitchen for a total
duration of 2 minutes. Next, he goes to the living room. After a minute in the
living room, he switches on the TV and then switches it off after 30 seconds.
He is in the living room for a total duration of 2 minutes. Next, he goes to the
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bedroom and simulates sleeping on the bed. He does not stay still in the bed,
rather is constantly in motion. He is in the bedroom for a total duration of 2
minutes. Finally, the person goes to the bathroom. He is in the bathroom for a
total duration of 2 minutes.

Among open source ontology reasoners that exist, e.g., Fact++, Pellet, Her-
mit and ELK. We use Pellet as it has more features in comparison [1] and is able
to pinpoint the root contradiction or clash when inconsistency occurs. Experi-
ments have been performed on a workstation with the following configuration:
Intel® Core™ 7 2.6 GHz processor and 8 GB of memory. For assessing the
system’s performance, two types of evaluations are performed and compared.
The first is the Contextualized Activity Evaluation (CAE), and the second is
the Parallel Activity Evaluation (PAE). The CAE case represents the working
of O as described in Section 2.2, where P behaves as a contextualizer such that
an activity model gets activated based on the context. In the PAE case, P is no
longer made to behave as a contextualizer, hence A; are active in all contexts.

An evaluation (CAE or PAE) is performed as an experiment by setting a
particular frequency f, (of the reasoning layer). An experiment is performed
with 5 iterations, with each iteration an extra activity model is added to O to
increase the system’s complexity. Each iteration is repeated 10 times to assess
the reasoner’s average computational time, and the maximum and minimum
variance, from among 10 values. In total four experiments are performed, their
process and results are described in the following Section.

4.2 Performance Assessment

Performance results are shown in Figure 5, where z-axis shows the increasing
number of ontologies in O (i.e., the number of activities Arianna™ attempts to
recognize), with each iteration of an experiment. In relation to this, the y-axis
shows the reasoner’s computational time (i.e, the sum of the reasoning time
spent in the ontologies of @). A thread with a unique color represents a unique
experiment conducted with a particular scheduled frequency f,. A black dot
on a thread marks the reasoner’s average (10 repetitions of an iteration for
an experiment) computational time, and vertical lines in the positive/negative
direction (from a black dot) show the maximum/minimum variance, respectively,
from the average computational time. The simplest network has two ontologies,
the Place Ontology P and .A;, while the most complex network we tested has
six ontologies, i.e., P and A;, As, ..., As.

Considering the CAE case, the reasoning layer is set to run with a time period
of 500 milliseconds (i.e., f, is 2 Hz), with the hypothesis that recognizing activi-
ties within 500 milliseconds is satisfying soft real-time constraint. Represented by
the blue thread, the reasoner’s computational time is high and increases linearly
with the increase in system’s complexity. Following the success of the previous
test, and considering the PAE case, f, is kept the same, i.e, 2 Hz. However, this
case is not represented by any thread, as an undefined amount of time was being
taken by the reasoner to finish the reasoning process. Following the drawback in
the previous case, and considering the same case, i.e., PAE, the reasoning layer
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Fig. 5. System’s complexity versus reasoner’s computation time. On z-axis are the
number of ontologies, where 2 means (P + A1), 3 means (P + A; + As2), etc.

is set to run with a higher time period of 3000 milliseconds (i.e, f, is 0.3 Hz), to
make sure that the reasoning process completes within the frequency f,, a condi-
tion which is satisfied with that time period. Represented by the red thread, the
reasoner’s computational time is initially low but then behaves exponentially,
with the increase in system’s complexity. Finally, following the success of the
previous case, and considering the CAE case, f, is kept the same, i.e, 0.3 Hz.
Represented by the green thread, the reasoner’s computational time is initially
low and remains low, as it increases linearly with the increase in complexity of
the system.
More in the discussion of the results:

1. Comparing the two CAE cases with frequencies 2 and 0.3 Hz, respectively,
against each other, and against the PAE case with frequency at 2 Hz, we
see that, with the approach described in Section 2.2 (i.e., represented by the
CAE cases), it is possible to have activity recognition with a high frequency.
This shows Ariannat’s ability to serve near real-time applications.

2. In case of PAE, when there are 6 ontologies in O, a high variance is seen with
the reasoner’s average computational time on the higher end, thus confirming
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an exponential behavior. In case of CAE when there are 5 ontologies in O, a
high variance is seen with the reasoner’s average computational time on the
lower end, thus confirming a linear behavior.

3. The PAE case (wherein, even if multiple smaller ontologies are used, all their
reasoners are running in parallel), represented by the red thread; shows an
evident exponential behavior and can be compared to using one large on-
tology in the system. As We know from the literature that (see Section 1),
with an increase in the number of axioms in an ontology the search space
increases exponentially. Therefore in comparison, the CAE case, with its
linear behavior, shows clearly the advantage of Arianna™’s modularity fea-
ture with respect to activity models and their contextualized evaluation.
Furthermore, such claim is supported by the fact that our system does not
accumulate instances within ontologies as it uses an external reasoner to deal
with temporal aspects of reasoning (as described in Section 2.2) and stores
the recognized activities in a database (as mentioned in Section 3).

5 Conclusion

In this paper, we present the activity recognition structure of our smart home
framework Arianna®, whose core is a reasoning layer based on an ontology net-
work, which is grounded on ontology models, statements, procedures, and events-
listeners, for which we provide general-purpose definitions. A use case scenario
comprising of 5 activity models was implemented and experimentally evaluated
for assessing its behavior and computational performance. Results (with CAE)
indicate that an AR system which exploits the modularity feature of a network
of ontologies in a contextualized manner, and in which temporal instances are
not accumulated, has near real-time AR capability and it addresses the scalabil-
ity and robustness requirement. Limitations of the presented use case are that
it considers a single occupant in the environment and although extensively, it is
tested with a simulated dataset. Hence, future work involves testing with data
from a real distributed sensor scenario and incorporating perception modules
in the aggregation layer, such that the network of ontologies can take state-
ments related to human gestures and postures. Nevertheless, this paper provides
a general-purpose discussion about ontology networks for AR. While the full
evaluation of this approach awaits further investigation and user feedback, our
initial results provide a base for building real-world use cases.
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