
EasyChair Preprint

№ 816

Efficient Encoding and Decoding Extended

Geocodes for Massive Point Cloud Data

Taehoon Kim, Kyoung-Sook Kim, Jun Lee, Akiyoshi Matono and
Ki-Joune Li

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 6, 2019



Efficient Encoding and Decoding Extended
Geocodes for Massive Point Cloud Data

Taehoon Kim∗†, Kyoung-Sook Kim∗‡, Jun Lee∗, Akiyoshi Matono∗, Ki-Joune Li†
∗ Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST)

Tokyo, Japan
{kim.taehoon, ks.kim, jun.lee, a.matono}@aist.go.jp

† Department of Computer Science, Pusan National University
Pusan, South Korea

{taehoon.kim, lik}@pnu.edu

Abstract—With the development of mobile surveying and
mapping technologies, point cloud data has been emerging
in a variety of applications including robot navigation, self-
driving drones/vehicles, and three-dimensional (3D) urban space
modeling. In addition, there is an increasing demand for the
database management system to share and reuse point cloud
data, unlike being treated as archive files in the traditional
uses and applications. However, database scalability needs to
be explored to process and manage a massive volume of point
cloud data defined by a 3D (X, Y, and Z) coordinates system.
The typical approach to handle big data and distribute it across
multiple nodes is data partitioning. Geohashing is a popular way
to convert a latitude/longitude spatial point into a code/string and
has used for storing data into buckets of the grid. Many methods
of handling big geospatial data, especially NoSQL databases,
are based on the geohashing techniques. In this paper, we
propose an efficient method to encode/decode 3D point cloud in a
Discrete Global Grid System (DGGS) that represents the Earth as
hierarchical sequences of equal area/volume tessellations, similar
to geohash. The current geohash of base36 has the difficulties of
working with high-resolution 3D point clouds for data storage,
filter, integration, and analytics because of its limitation of cell
size and unequal areas. We employ DGGS-based Morton codes
with more than 64 bits for precise 3D coordinates of point cloud
and compare the encoding/decoding performance between two
implementations: using strings and using the combination of bit
interleaving and lookup tables.

Index Terms—Big data management, 3D point cloud, Discrete
Global Grid System, Morton order

I. INTRODUCTION

Big data has been a major topic in recent years to create
value from data beyond the ability of typical database systems
[1]. In geospatial research communities, big data has been
discussed to capture, store, manage and analyze real-world
phenomena from huge volumes of two-dimensional geospa-
tial and spatio-temporal data. Not only data representation
and integration, but also query processing have had to deal
successfully with new challenges on volume, velocity, variety,
or veracity. Parallel processing techniques based on data
partitioning increases the efficiencies of geospatial operations
across nodes in a cluster [2]. Geohash is the most popular
method of expressing and indexing a location using a key
generated by a Space Filling Curve (SFC), partitioning a

‡corresponding author

domain into several grids. It is naturally adapted to harness
big geospatial data [3]. However, the area/volume of the parti-
tioned grids by geohash is not the same. These irregular sizes
of the grid can be a problem of the projection and the seamless
integration from various geospatial data sources. In order to
solve the problem, the Discrete Grid Global System (DGGS)
has recently been proposed for geo-referencing [4]. DGGS
divides the Earths surface into grids with multiple levels of
granularity and generates a code per each grid through a
SFC [5], [6]. The Morton order has been commonly used
for addressing each grid and access the geospatial data onto
the grids in Geographic Information Systems (GIS) [7]–[13].
However, existing studies have limited the maximum size of
the Morton code to within the number of bits of the CPU in
order to process the conversion between the Morton code and
the coordinates within a constant time O(1); e.g., when using
the 64-bit CPU, the maximum size of the code is 64 bits.

In this study, we propose a method to effectively en-
code/decode Morton codes with sizes over 64 bits for high-
resolution 3D point clouds. A point cloud is a collection of
points defined by a given coordinates system to represent a 3D
shape or feature with X, Y and Z coordinates and additional
attributes such as intensity and angle. Point clouds are most
often created by methods used in photogrammetry or remote
sensing. The combination of Light Detection And Ranging
(LiDAR) sensors and positioning systems like a Global Posi-
tioning System (GPS) are the most common instruments used
to collect point cloud data to capture the real world. The point
cloud is recently emerging as a fundamental data to make high
definition maps [14]; however, the tremendous volume of the
point data makes difficult to handle. An example of data size
is about 11 TB of data in the Netherlands (about 40, 000km2)
area, although it varies depending on the detail of the data
and type of LiDAR sensors [15]. It is almost 12,000 times the
data capacity of OpenStreetMap, which is a two-dimensional
vector map service, in the same area. Moreover, their relative
or local coordinate systems depending on locations or sensors
obstruct to process and integrate the point cloud data from
various sources seamlessly.

We put forward Morton codes for large volumes of 3D
point cloud data based on the DGGS. However, a point in



a cloud generated by LiDAR requires a very high-resolution
Morton code. If we transform 3D coordinates of points into
64-bit Morton codes, we can use only up to 21 bits for each
coordinate. This is insufficient to express LiDAR data because
of the limitation of identification. For example, we need 96
bits of Morton code, assigning 32 bits for each coordinate
representation, to enable the identification within 1mm3 scale
of a grid. The encode/decode method we present enhances
the resolution of location and improves the processing perfor-
mance by using the combination of bit interleaving and lookup
tables.

The rest of this paper is organized as follows. Section II
briefly addresses the DGGS for reference and the SFC code.
In Section III, we present how to handle 3D point cloud data
with the DGGS and Morton order. Section IV describes the
encode/decode methods using strings and bits lookup tables.
We compare the performance of the two methods through
experiments with various conditions in Section V. Finally, we
conclude this paper with is concluded in Section VI.

II. RELATED WORKS

A. Discrete Global Grid System (DGGS)

Discrete Grid Global System (DGGS) is a spatial reference
system that describes a position in the real world by a datum
[4]. Two geospatial standard organizations of the Open Geo
Consortium (OGC) and the International Organization for
Standardization Technical Committees (ISO/TC) 211 are pro-
moting DGGS as a new framework for coordinate conversion
from an ellipsoidal coordinate system to a plane. A DGGS
uses a hierarchical tessellation of cells to partition the surface
of the Earth with equal areas/volumes for a grid based global
spatial information framework to map data at a location on
the map. The main objectives are as follows.
Minimize distortion: In a grid based global framework, it is

important how to construct structure grid cells over the
entire surface of the Earth. For example, geohash is a
hierarchical spatial data structure where space is divided
into rectangular cells, each with varying degrees of the
area and/or shape distortion. Even though it contributes
to the easy management and faster processing in a spa-
tial database, geohash is difficult to guarantee accurate
geospatial measurements like distance and area. Namely,
the coordinate conversion and transformation should be
carefully considered. The concept of DGGS is designed
to solve this problem by dividing the surface of the earth
with the equality of area and shape.

Data integration: The goal of the DGGS is to be able to
seamlessly integrate spatial data from multiple sources
and types in any location (e.g., Latitude/Longitude) at
any scale by referring to a single reference framework
consisting of tessellations; e.g., tetrahedrons, cubes, and
octahedrons to model the earth. With a DGGS, we can
consistently replicate the result of spatial analysis any-
where on the Earth. In addition, it provides statistically
valid summaries based on any chosen selection of cells

by optimizing the loss of geospatial data during the
projection process.

Efficient Data analysis and visualization of big data:
DGGS has a set of functional algorithms that enable
rapid data analysis for very large numbers of cells and
are inherently suited for parallel processing. It is also
designed to more efficiently use CPU and GPU resources
to parallel and distributed processing for geographically
relevant data such as language, environment, and climate.
Also, its hierarchical structure is suitable for the level of
detail representation for visualization.

B. Space Filling Curves

A space-filling curve is a continuous mapping from an
n-dimensional space into a list of unique codes (or one-
dimensional range). There are many existing studies on the
data management of point cloud through SFC codes and they
can be classified into three types depending on the represen-
tation of code: constant type, string type, and others. The
constant type represents an integer as a code [8]–[12]. Even
though it is a common implementation in GIS, the maximum
SFC code size must be less than or equal to the number of
bits of the CPU. Psomadaki [10] used the NUMBER type of
an Oracle database that supports 128 bit to solve this problem,
but this is not a fundamental solution. Next, the string type is
designed to overcome the restriction on the size of the SFC
code [7], [16]. However, its encoding/decoding performance is
lower than the constant-type code. In [17], Pavlovic proposed
a compression method for point cloud data using the SFC.
The method is based on a static space and a distribution of
coordinates for input point cloud data. If the point cloud is
dynamically inserted and integrated into the entire globe, the
performance issue will likely arise. In this study, we consider
a string-type SFC code based on the Morton curve to express
point clouds on a global coordinate system.

Morton (or Z-order) code is a familiar SFC ordering method
under the consideration of the data locality [18], [19]. It
generates adjacent Morton codes to be spatially close to each
other with a hierarchical structure. For example, a three-
dimensional Morton code with a resolution of 1 is shown in
Fig. 1. As seen in Fig. 1, Morton code can be computed by
a simple bit-interleaving. The parameters needed to generate
the Morton code are as follows: n-dimensional coordinates,
length of Morton code (resolution). For example, for a three-
dimensional point p, the x-coordinate can be expressed in
binary form as p∗x = x5x4x3x2x1x0. Similarly, the y and
z coordinates can be expressed as p∗y = y5y4y3y2y1y0,
p∗z = z5z4z3z2z1z0. At this time, the 18-bit Morton code is
represented by bit-interleaving as follows:

m(p∗) = z5y5x5z4y4x4z3y3x3z2y2x2z1y1x1z0y0x0

III. DGGS FOR 3D POINT CLOUD

First of all, we describe the 3D DGGS method introduced in
[16]. The method is designed for constructing a DGGS with
respect to location, time, and densities of point cloud data.



Fig. 1. Example of Morton code generation in a 3D space

For the sake of simplicity, we call P-code the 3D DGGS code
generated by the following processes:

1) Firstly, the (continuous) precision of a point in a stan-
dard map projection should be calculated. The precision
associated with the point is linked to the closest discrete
resolution of a DGGS.

2) Next, the point is converted from the initial CRS into
geographic coordinates on the WGS84 ellipsoid, with
the precision of the original CRS.

3) To compute the Morton code for use in a DGGS, the
global indexing framework, the point is projected onto
the Icosahedral Snyder Equal Area (ISEA) projection
through the following steps:

a) Find the icosahedral triangle face number on which
the point is located as shown in Fig. 2 (A).

b) Compute the grid coordinates originating from the
geographic center of that face. At this time, the
geographical coordinates of all triangular centers
and the necessary equations to calculate are given
from [20].

c) Then, The points rhombus face number is then
determined based upon its triangle face number as
shown in Fig. 2 (B).

d) Finally, the coordinates of the point are converted
to the left vertices of the included rhombus, which
is the origin of the Morton SFC for every face.
Since the interior angle of a rhombus at the left
vertex is 120◦ as shown in Fig. 2 (C), its X and
Y axis also skewed with an interior angle. The
equations to convert an coordinate (x, y) from the
previous step into those of a skewed system on a
rhombus are as follow:

Xskewed = x− y√
3

(1)

Yskewed = x+
y√
3

(2)

4) The x and y coordinate from rhombus are converted into
binary form with the same number of bits as the DGGS
resolution, through the following steps:

Fig. 2. DGGS Reference Frame

a) If a point has been assigned to a cell at resolution
r, Xbin (andYbin, Zbin) is defined as below:

Xbin = br−1br−2...b1b0 (3)

Note that b is a binary number.
b) These binary coordinates are converted into in-

tegers. Then, the below formula can be used to
generate a Morton code MC for the point in 2D
[21] as shown in Fig. 3:

MC = 2 ∗ (Ybin) + (Xbin) (4)

And this formula can easily be extended into 3D:

MC = 4 ∗ (Zbin) + 2 ∗ (Ybin) + (Xbin) (5)

c) Lastly, a P-code is made by the combination of the
rhombus face number and the Morton code MC .
The header of the P-code is face number and the
tail of the P-code is the Morton code.

Fig. 3. Example of MC for 2D coordinates with three resolution. Figure
from Zhao et al.,2006 [21]



In this way, we can generate the P-code, the Morton
code for handling the point cloud data in DGGS. However,
when performing a conversion process on large point data,
each process should be performed as quickly as possible,
even if it is a simple process. In this paper, we propose a
more efficient method for generating Morton code than the
previously proposed method.

IV. ENCODING/DECODING WITH P-CODE

In this section, we describe two methods to encode/decode
P-code. Firstly, we show how to convert through the string
handling which is intuitively implemented in the proposed
method from the previous section. After that, we suggest how
to convert using bit operation and lookup tables.

A. Encoding with P-code

There are two ways to encode the P-code;a method using
string handling, a method using bit operation. Both methods
have identical inputs and outputs; Inputs are the integer
coordinates in the rhombus, the rhombus index f and the
resolution of the DGGS, r, which are derived from the three-
dimensional point cloud coordinates, as described in Section
III. The output is a P-code corresponds to the input data.
The flowchart of the encoding method is the same as Fig.
4. Commonly, the face index is attached to the front of the
final generated P-code. Then, the string handling method is
a somewhat intuitive implementation of the method described
in Section III. The process of generating P-code using string
handling is represented by Algorithm 1.

Algorithm 1 Encode P-code with string handling
Input:
- x: 32-bit integer coordinate on the X axis
- y: 32-bit integer coordinate on the Y axis
- z: 32-bit integer coordinate on the Z axis
- r: resolution of the DGGS
- f : index of the rhombus to which the coordinates belong
Output:
- pcode: DGGS based Morton code for point clouds
Begin

1: binX ← convert x coordinate to binary string
2: binY ← convert y coordinate to binary string
3: binZ ← convert z coordinate to binary string
4: Make the lengths of binX , binY , and binZ are same with

r using zero fill
5: for i = 0 to r do
6: intX ← get a i-th character of binX as integer
7: intY ← get a i-th character of binY as integer
8: intZ ← get a i-th character of binZ as integer
9: pcodepart ← intX + intY ∗ 2 + intZ ∗ 4

10: pcode← Add pcodepart behind pcode
11: end for
12: Add a f number at front of pcode
13: return pcode

End

Fig. 4. Flow chart of P-code encoding processing

Algorithm 1 generates and merges one character at a time to
generate a P-code string having a length of resolution (r). To
do this, it is necessary to convert the input coordinates (x, y, z)
into binary numbers and then making the length of P-code is
equal to r. If the length of P-code is less than r, fill in the
character ’0’ as much as the remaining length. On the other
hand, if the length if P-code is greater than r, only substrings
from the beginning to r are used. Finally, a P-code is generated
by adding a rhombus index f to the front of generated pcode.
The time complexity of Algorithm 1 is determined by the
resolution, so it becomes O(r).

Next is how to encode P-code using bit operation. We had
previously studied how to effectively encode/decode Morton
codes using bit operations. However, the suggested method in
Section III cannot use the existing method with the following
issues; If the output resolution r is greater than 21, the size
of the generated Morton code exceeds 64 bits. The existing
method [8], [9], [11] has a limitation that the size of the
generated Morton code cannot exceed 64 bits when 64-bit OS
is used. In order to solve this limitation, we propose a method
of merging the results after processing the existing Morton
code into several parts, like divide and conquer.

The P-code generation process using bit operation is the
same as Algorithm 2. Simply fetching the required value using
only the bit operation doesn’t reduce the time complexity of
the algorithm. For more efficient processing, a fixed-size value
must be processed at one time. In Algorithm 2, the encoding is



performed through a lookup table that pre-computed encoding
results in a 9-bit input object. The reason for choosing 9-bit
are as follows:

1) When generating a Morton code for three-dimensional
coordinates, the values are independently determined by
3-bit units.

2) If the size of the input object of the lookup table is n-
bit, the size of the Morton code for the three-dimensional
coordinates is ((n− 1) ∗ 3 + 1) bits.

3) If the size of the input object of the lookup table is n-bit
and the size of the element in the lookup table is 32 bits,
then the required storage space is proportional to two to
the power of n, as in the following formula:
required storage space = (2b ∗ 32) bits.

4) As the size of the input object of the lookup table
increases, the number of operations does not decrease
unconditionally.

In conclusion, when the 32-bit data structure is used as an
element, the maximum size of the input object of the lookup
table is 9-bit.

To generate P-code, two lookup tables are required; MT
table for converting integers to Morton code, and DT table
for converting Morton code to P-code. Algorithm 2 generates
Morton code using the MT table for the input integer coordi-
nate value and then generates P-code using the DT table with
the generated Morton code. However, since the entire Morton
code can’t be generated immediately through the MT table,
it has to be divided into 9-bit units. Since the input integer
coordinate value is maximum of 32 bits, it must be repeated
4 times when processing in the 9-bit unit. Also, mcodepart,
the part of Morton code generated by the MT table, it is
maximum 27 bits, so it must be repeated 3 times in 9-bit units.
All processes are processed in constant time (O(1)). The P-
code is generated by taking a substring of resolution r from the
last generated pcode and prefixing it with the rhombus index
f . The time complexity of Algorithm 2 is O(12) ' O(1).

B. Decoding with P-code

There are two ways to decode P-codes, same as encode; a
method using string handling, a method using bit operation.
Both methods have identical inputs and outputs; The input is
the P-code, and the output is the three-dimensional coordinate
corresponding to the input data. The flowchart of the decode
method is the same as Fig. 5. Basically, both method processes
in the reverse order of encoding. Also, a face index is
commonly generated by taking one character from the front
of P-code.

The String handling-based decoding method is the same as
Algorithm 3. Algorithm 3 is processed as follows:

1) Create a variable [x, y, z] for storing the three-
dimensional coordinate values as binary numbers.

2) Take one character from beginning to end of the P-code
(pcodei), then add the coordinate values to pcodei to
[x, y, z]; For example, if pcodei is ’5’, add [’1’,’0’,’1’]
to [x, y, z].

Algorithm 2 Encode P-code with bit operation
Input:
- x: 32-bit integer coordinate on the X axis
- y: 32-bit integer coordinate on the Y axis
- z: 32-bit integer coordinate on the Z axis
- r: resolution of the DGGS
- f : index of the rhombus to which the coordinates belong
Output:
- pcode: DGGS based Morton code for point clouds
Begin

1: MT ← pre-computed 9-bit lookup table for encoding
integer to Morton code

2: DT ← pre-computed 9-bit lookup table for encoding
Morton code to P-code

3: bitmask = 0x1FF {9 bits mask}
4: for i = 4 to 1 do
5: shift = (i− 1) ∗ 9
6: mcodepart ←MT [(z>>shift) ∧ bitmask]>> 2

∨MT [(y>>shift) ∧ bitmask]>> 1
∨MT [(x>>shift) ∧ bitmask]

7: for j = 3 to 1 do
8: shift = (j − 1) ∗ 9
9: pcodepart ← DT [(mcodepart>>shift) ∧ bitmask]

10: pcode← Add pcodepart behind pcode
11: end for
12: end for
13: pcode← pcode substring from header to r length
14: Add a f number at front of pcode
15: return pcode

End

3) Finally, converts the coordinate values generated by
binary numbers to integers and return these coordinates
and the face index.

Algorithm 3 uses three If conditional statements to de-
termine the value of [x, y, z], but this can be replaced by
one Switch conditional statement with eight different cases.
As a result, the time complexity of the String handling-
based decoding method is O(r) because a simple statement is
repeated as much as the length of the P-code.

The Bit operation-based decoding method is the same as
Algorithm 4. Similar to the encoding process, two lookup
tables are required for decoding; DTde table to convert P-
code to Morton code, MTde table to convert Morton code to
integer coordinate. Algorithm 4 is processed as follows and the
time complexity of the Bit operation-based decoding method
is O(r/3).

1) To make the length of the input P-code is a multiple
of 3, filling the ’0’ character at the head of the input
P-code.

2) Obtains a substring of length 3 from the tail of the P-
code.

3) Using the DTde table, get the Morton code correspond-
ing to the obtained substring from the previous step.



Fig. 5. Flow chart of P-code decoding processing

4) Using the MTde table, get the corresponding coordinates
[x, y, z] for the obtained Morton code from the previous
step.

5) Since the coordinate value generated by step 4 is a
partial value, the actual value is calculated using SHIFT
and OR operation.

6) Return the final calculated coordinate values and face
index together.

V. EVALUATION

In this section, we introduce the results of evaluating
the performance of implemented functions. Firstly, we show
the benchmark results evaluated using Java Microbenchmark
Harness (JMH). After that, performance is evaluated according
to the number of points and resolution using point cloud data.
Finally, we evaluate the performance according to the number
of cores of Spark.

A. Experiment environments

The experimental environment is the same as Table I. All
functions are implemented using Java. The point cloud data
used in the experiment was taken from Shizuoka Point Cloud
DB1.

1https://pointcloud.pref.shizuoka.jp/

Algorithm 3 Decode P-code with string handling
Input:
- pcode: DGGS based Morton code for point clouds
Output:
- coord: 3-dimensional coordinate constituting the P-code
- f : index of the rhombus to which the coordinates belong
Begin

1: f ← extract one character from the head of pcode
2: r ← the length of pcode
3: for i = 0 to r do
4: pcodei ← i-th character of pcode
5: if pcodei∧ 0x01 = 0x01 then
6: coordX ← add ’1’ as a character
7: end if
8: if pcodei∧ 0x02 = 0x02 then
9: coordY ← add ’1’ as a character

10: end if
11: if pcodei∧ 0x04 = 0x04 then
12: coordZ ← add ’1’ as a character
13: end if
14: coord← convert coord to integer
15: end for
16: return coord and f

End

Algorithm 4 Decode P-code with bit operation
Input:
- pcode: DGGS based Morton code for point clouds
Output:
- coord: 3-dimensional coordinate constituting the P-code
- f : index of the rhombus to which the coordinates belong
Begin

1: DTde ← pre-computed 9-bit lookup table for decoding
Morton code from P-code

2: MTde ← pre-computed 9-bit lookup table for decoding
coordinate from Morton code

3: f ← extract one character from the head of pcode
4: while the length of pcode isn’t a multiple of 3 do
5: pcode← Add ’0’ to the head of pcode
6: end while
7: cnt← the result that length of pcode divided by 3
8: for i = 0 to cnt do
9: iS = (cnt− (i+ 1)) ∗ 3

10: iE = iS + 3
11: pcodepart ← a part of pcode between iS and iE index
12: idxM ← DTde.get(pcodepart)
13: coordX ← coordX ∨ (MTde[idxM ]<<(3 ∗ i))
14: coordY ← coordY ∨ (MTde[idxM>>1]<<(3 ∗ i))
15: coordZ ← coordZ ∨ (MTde[idxM>>2]<<(3 ∗ i))
16: end for
17: return coord and f

End



TABLE I
EXPERIMENT ENVIRONMENTS

feature information
OS Windows 10 Pro

CPU Intel(R) Core i7-8700 CPU duo, 3.19 GHz
Memory 64 GB, 2666 MHz

Java version 1.8
JMH version 1.21
Spark version 2.3.0

TABLE II
BENCHMARK RESULTS OF EACH ENCODE/DECODE FUNCTIONS

function mode cnt score & error units
decodeWithBitOperation avgt 25 0.324 ± 0.027 us/op
decodeWithString avgt 25 1.387 ± 0.110 us/op
encodeWithBitOperation avgt 25 1.363 ± 0.088 us/op
encodeWithString avgt 25 2.073 ± 0.088 us/op

B. Benchmark

We benchmarked each function introduced in Section IV.
Benchmarks were performed using JMH 2 provided by Open-
JDK. The benchmark result is the same as Table II. function
is the name of the function to be benchmarked. mode is the
mode used to perform the benchmark. In this paper, we set
the mode to average time. cnt means the number of iterations.
In this paper, it is set to repeat 5 times using 5 threads.
score&error means evaluation result according to mode. units
means the time unit of the evaluation. In this paper, we used
a microsecond unit.

C. Experiment with point cloud data

Fig. 6 shows the time to perform encoding/decoding on the
number of points. We measured the runtime by varying the
points from one million to eight million. For encoding, the
target resolution is set to 32, the maximum resolution. The
final run time is the average time of the same function 50
iterations. In all cases, we found that the Bit operation-based
method is faster than the String handling-based method. Simi-
lar to the benchmark results shown in the previous section, the
Bit operation-based method is faster than the String handling-
based method by about two times, and the decoding is about
four times faster than the String handling-based method. The
reason for this result is confirmed by the difference in the
time complexity of the algorithms. In the case of encoding,
the time complexity of the string handling method is O(r).
On the other hand, the time complexity of the bit operation
method is O(1). Also, similarly, In the case of decoding, the
time complexity of the string handling method is O(r), but
the time complexity of the bit operation method is O(r/3).

Fig. 7 is the result of encoding/decoding by parallelism
using the Apache Spark3. The number of spark cores was
changed from 1 to 4 and the conversion execution time
was compared. The final execution time was taken as the
average value of 20 repeated experiments. The legend is

2http://openjdk.java.net/projects/code-tools/jmh/
3Lightning-fast unified analytics engine: https://spark.apache.org

structured as follows; Number of points entered - used method.
Experimental results show that the number of spark cores and
the execution time are almost inversely proportional.

Fig. 8 shows the change in execution time, according to
the encoding resolution. For String handling-based encoding,
the time required is linearly increased as the resolution is
increased, but it is almost the same for Bit operation-based
encoding. The reason for this is that the time complexity of
the string handling encoding is determined by the resolution;
O(r). On the other hand, the time complexity of the bit
operation encoding is O(1).

VI. CONCLUSION

With the recent increase in the volume of 3D point cloud
data produced, a method for managing the point cloud data
becomes necessary. To manage point cloud data for the entire
globe, a Morton code for 3D (and 4D) point cloud in DGGS
has been proposed and is called P-code. However, for high
precision, the code size can exceed 64 bits, which can cause
performance problems. In this work, we proposed an efficient
encoding/decoding method for high-precision point cloud data.
To this end, we contributed the following points:

• Proposed methods to encode/decode high-resolution Mor-
ton code using the combination of bit interleaving and
lookup tables.

• As a result of performance evaluation, encoding perfor-
mance gains of up to 2x and decoding performance gains
of up to 4x compared with String handling-based method.

However, this paper has several limitations. Firstly, the
proposed methods are focused on only the 3D coordinate.
But, P-code covered higher dimension;e.g., 3D coordinate with
time. And we need methods for analyzing data, but P-code
cannot be directly used to analyzing or computation. However,
for managing and processing the massive volume of point
cloud data, it will be necessary to solve these issues.

ACKNOWLEDGMENT

This work was partially supported by the New Energy and
Industrial Technology Development Organization (NEDO).

REFERENCES

[1] R. V. Zicari, “Big data: Challenges and opportunities,” Big data com-
puting, vol. 1, pp. 103–128, 2014.

[2] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE transactions on knowledge and data engineering, vol. 26, no. 1,
pp. 97–107, 2014.

[3] K. Lee, R. K. Ganti, M. Srivatsa, and L. Liu, “Efficient spatial query
processing for big data,” in Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Sys-
tems. ACM, 2014, pp. 469–472.

[4] M. B. Purss, R. Gibb, F. Samavati, P. Peterson, and J. Ben, “The
ogc® discrete global grid system core standard: A framework for rapid
geospatial integration,” in Geoscience and Remote Sensing Symposium
(IGARSS), 2016 IEEE International. IEEE, 2016, pp. 3610–3613.

[5] X. Wang and A. Gruen, “A hybrid gis for 3-d city models,” in
XIXth Congress, International Society for Photogrammetry and Remote
Sensing (ISPRS 2000), vol. 33, no. B4/3. Gropher Publ., 2000, pp.
1165–1172.

[6] J. Bai, X. Zhao, and J. Chen, “Indexing of the discrete global grid using
linear quadtree,” in Proceedings of ISPRS Workshop on Service and
Application of Spatial Data Infrastructure, 2005, pp. 267–270.



Fig. 6. Performance evaluation with point cloud data: (a) performance of encoding methods, (b) performance of decoding methods

Fig. 7. Performance evaluation with Spark: (a) performance of encoding methods, (b) performance of decoding methods

Fig. 8. Encoding performance evaluation based on resolution with a million
points

[7] J. Wang and J. Shan, “Space filling curve based point clouds index,” in
Proceedings of the 8th International Conference on GeoComputation,
2005, pp. 551–562.

[8] J. Baert, A. Lagae, and P. Dutré, “Out-of-core construction of sparse
voxel octrees,” in Proceedings of the 5th high-performance graphics
conference. ACM, 2013, pp. 27–32.

[9] T. Zäschke, C. Zimmerli, and M. C. Norrie, “The ph-tree: a space-
efficient storage structure and multi-dimensional index,” in Proceedings
of the 2014 ACM SIGMOD international conference on Management of
data. ACM, 2014, pp. 397–408.

[10] S. Psomadaki, P. Van Oosterom, T. Tijssen, and F. Baart, “Using a
space filling curve approach for the management of dynamic point
clouds,” ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, IV-2 W, vol. 1, pp. 107–118, 2016.

[11] T. Zäschke and M. C. Norrie, “Efficient z-ordered traversal of hyper-
cube indexes,” in 17. GI-Fachtagung Datenbanksysteme für Business,

Technologie und Web (BTW 2017). ETH Zürich, 2017.
[12] M. Vinkler, J. Bittner, and V. Havran, “Extended morton codes for high

performance bounding volume hierarchy construction,” in Proceedings
of High Performance Graphics. ACM, 2017, p. 9.

[13] B. Lin, L. Zhou, D. Xu, A.-X. Zhu, and G. Lu, “A discrete global grid
system for earth system modeling,” International Journal of Geograph-
ical Information Science, vol. 32, no. 4, pp. 711–737, 2018.

[14] X. He, J. Zhao, L. Sun, Y. Huang, X. Zhang, J. Li, and
C. Ye, “Line-based road structure mapping using multi-beam
lidar,” CoRR, vol. abs/1804.07028, 2018. [Online]. Available:
http://arxiv.org/abs/1804.07028

[15] P. van Oosterom, O. Martinez-Rubi, M. Ivanova, M. Horhammer,
D. Geringer, S. Ravada, T. Tijssen, M. Kodde, and R. Gonçalves,
“Massive point cloud data management: Design, implementation and
execution of a point cloud benchmark,” Computers & Graphics, vol. 49,
pp. 92–125, 2015.

[16] N. Sirdeshmukh, “Utilizing a discrete global grid system for handling
point clouds with varying locations, times, and levels of detail,” Master’s
thesis, Delft University of Technology, 6 2018.

[17] M. Pavlovic, K.-N. Bastian, H. Gildhoff, and A. Ailamaki, “Dictionary
compression in point cloud data management,” in Proceedings of the
25th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems. ACM, 2017, p. 45.

[18] G. M. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” IBM Ltd., 1966.

[19] P. van Oosterom and T. Vijlbrief, “The spatial location code,” in Pro-
ceedings of the 7th international symposium on spatial data handling,
Delft, The Netherlands, 1996.

[20] J. P. Snyder, “An equal-area map projection for polyhedral globes,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, vol. 29, no. 1, pp. 10–21, 1992.

[21] X. Zhao, J. Bai, J. Chen, and Z. Li, “A seamless visualizaton model of
the global terrain based on the qtm,” in Advances in artificial reality
and tele-existence. Springer, 2006, pp. 1136–1145.


